Stellar activity through different observing modes

Team (INAF-OAPa): Claudia Di Maio, Gianluca Cracchiolo, Alfredo Biagini, Antonino Petralia, Giusi Micela

Ariel-it 25-27/05/2022

Rationale

- Ariel
 - Multiband approach: (3) photometry + infrared low resolution spectroscopy;
 - Timescales of observation related to the transit time (hrs);
- To approach Ariel data analysis we need to correct for the stellar activity... but first we should describe it:
 - --> Need for accurate activity models (very important in a broader context);
 - --> Accurate timescales description;
 - --> Need to build a multiband methodology;

The geometry of the model

- Spots based model;
- Circular spots built on a (R=1) sphere, then projected on a disk;
- No geometrical approximation (distortion due to projection);
- Effect of the inclination;
- Spot parameters:
 - Latitude;
 - Longitude;
 - Radius;
 - Temperature
- No temporal evolution;

Stellar disk

Same model, different applications

- High resolution spectroscopy:
 - Cross Correlation Function (CCF) --> Claudia di Maio (PhD student, claudia.dimaio@inaf.it)
- Light curves modelling:
 - Accurate high cadence light curves (Tess-like) --> Gianluca Cracchiolo (PhD student, gianluca.cracchiolo@inaf.it)
 - Simultaneous multiband photometry (R,J,I,REM etc..) --> Alfredo Biagini (see next talk)
 - (PhD student, alfredo.biagini@inaf.it)

The fitting procedure

- A bayesian framework to account for the parameter errors through a Markov Chain Monte Carlo (in python);
 - Result tested with different samplers;

• Likelihood:
$$\ln p(y_n, t_n, \sigma_n^2, \theta) = -\frac{1}{2} \mathbf{r}^T K^{-1} \mathbf{r} - \frac{1}{2} \ln \det K - \frac{N}{2} \ln 2\pi$$

- We test same date with different number of spots;
- Bayesian Information Criterion (BIC) comparison selects the preferred model: $BIC = k \ln(N) - 2 \ln(\mathcal{L})$

(python packages: george, emcee, pymultinest)

High resolution spectroscopy

- CCF is broadened by the rotation --> (2D) rotational profile built on the disk;
- Spots hide a portion of the disk;
- The integration leads to a distorted (1D) profile whose center is the radial velocity;

- Limb darkening (linear);
- No temporal coherence is imposed in a series:
 - Each point in a series is extracted independently;

V830 tau

- Characteristics:
 - Stellar type: M0;
 - Mass: 1M;
 - Radius: 2R;
 - Temperature: 4050K;
 - Prot = 2.74d
 - Vsini = ~30km/s
 - i ~55deg
- HARPS-N Data:
 - 146 observations of V830 Tau collected between October 2017 and March 2020

(Grankin 2013, Donati et al. 2015, Damasso et al. 2020, Di Maio et al. in preparation)

V830 Tau @ HARPS-N.2018-01-03T00-22-01

Di Maio et al. in preparation

V830 Tau – Full HARPSN series

- 146 observations

--> strong reduction of the dispersion;

Di Maio et al. in preparation

Model outcomes

- Number of spot;
- Spot distribution and dimension (filling factor);
- (lorentzian) wings properties;
- Radial velocity;
 - The reduced dispersion could help planet detection/characterization

Light curves modelling

- Phoenix spectra to derive fluxes in the desired spectral band (when possible, a black body otherwise);
- Limb darkening (linear);
- Spot Temperature;
- Spots hide a portion of the disk;
- Integration of the disk leads to a point in the time series;
- Temporal coherence is imposed:
 - Spots are built for the first time point and then rotate with the star;
 - The fit provides the initial spot configuration;
- Spot do not evolve;

V1298 tau

- Characteristics (Suárez Mascareño et al. 2022):
 - Stellar type: K1;
 - Mass: 1.17M;
 - Radius: 1.278R;
 - Temperature: 5050K;
 - Prot = 2.91d
 - 4 confirmed planets;
 - i = ~90 (equatorial-on);
- Tess Data:
 - Sector 43;
 - (data binned to 50 mins in the analysis)

Temporal evolution

- The model does not consider spot evolution (yet..);
- To study how spots evolves?
 - \rightarrow The fit is performed for time-scales shorter than the period (Prot/2);
 - → we divide the light curve in several temporal windows (shifted by Prot/4) and we fit them separately;

(data binned to 50 mins)

Spot latitudes

(4 spot model - preliminary results)

Issues:

- Not randomly distributed, high ۲ latitudes seems to be preferred;
- In the second half, low ۲ latitudes spots disappear;

Spot radius distribution

(preliminary results)

Issues:

- Three main distributions;
- Small changes in radii;

Spot longitudes (preliminary results)

- Phased longitudes at t=0;
- Different distributions in the two halves --> spot evolution

10 8 Number of Spot 6 4 2. 0 -150-100-50 0 50 100 Longitude (deg) Second half 12 10 Number of Spot 8 6 4 2

0

-150

-100

-50

0

Longitude (deg)

50

100

150

First half

Model outcomes

- Number of spots (could be time dependent);
- Spot distribution and dimension (filling factor);
- Temperature;
- Time scale of spot evolution;

Future perspective

• Expanding the model:

- Facolae (in development);
- Spot evolution (time variation);

• Methodology to apply the model to Ariel data:

- Interoperability with accurate high cadence photometers (ex. Tess):
 - Spot distribution and their evolution (in which time scales);
- Multiband analysis (see Alfredo's talk):
 - Temperature in different bands --> constrain spectral properties of spots;

--> Characterization of the star activity in the out of transit (of interest in a broader context than planet characterization);

--> Spot distribution and temperature to correct the in-transit spot effects;

--> Apply the method to Ariel simulator in order to help target selection;