Analysis of the mass uncertainties on retrieval accuracy

Work in progress...

Speaker

Claudia Di Maio PhD Student

2nd Meeting of the Ariel-It Science 25-27 May 2022

Quantify the impact of mass uncertainty on spectral retrieval analyses for different kind of planets (in presence of clouds at different altitude), to evaluate whether these measurements are precise enough for the atmospheric characterisation.

Scale Height
$$H = \frac{k_b T (R_0 + z)^2}{\mu M_p G}$$

- R₀ is radius at which a clear-sky atmosphere becomes opaque at all wavelengths.
 - In the case of a cloudy atmosphere degeneracies may exist as R₀ cannot be detected accurately.
- For a gaseous planets, μ is usually equal to 2.3 (defined by the ratio H₂/He only). In secondary atmospheres, a wide range of main atmospheric components may exist.
 - μ is degenerate with M_p
- The temperature is expected to change with altitude
- The trace gases' number densities may change with altitude but could be independent from other parameters, including the mass.

About Taurex

Claudia Di Maio

2nd Meeting of the Ariel-It Science

THE ASTROPHYSICAL JOURNAL, 896:107 (13pp), 2020 June 20 2020. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/ab8f8t

Impact of Planetary Mass Uncertainties on Exoplanet Atmospheric Retrievals

Q. Changeat⁽¹⁰⁾, L. Keyte⁽¹⁰⁾, I. P. Waldmann⁽¹⁰⁾, and G. Tinetti⁽¹⁰⁾ Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; quentin.changeat.18@ucl.ac.uk Received 2019 August 17; revised 2020 April 11; accepted 2020 May 1; published 2020 June 17

Primordial Atmosphere			Secondary	Atmosphere			
Stellar Characte	eristics	Planet Chara	acteristics	Stellar Char	acteristics	Planet Char	acteristics
Spectral type $M_{\star}(M_{\odot})$ $R_{\star}(R_{\odot})$ T_{eff} (K)	G0 1.04 1.19 6091 7.65	$egin{array}{l} M_p(M_J)\ R_p(R_J)\ T_p \ ({ m K}) \end{array}$	$0.73 \\ 1.39 \\ 1450$	$egin{array}{l} ext{Spectral typ} \ M_{\star}(M_{\odot}) \ R_{\star}(R_{\odot}) \ T_{ ext{eff}} \ (ext{K}) \end{array}$	e M 0.4 0.3 3671	$egin{aligned} &M_p(M_J)\ &R_p(R_J)\ &T_p\ (\mathrm{K}) \end{aligned}$	$0.01 \\ 0.2 \\ 450$

Claudia Di Maio

2nd Meeting of the Ariel-It Science

Claudia Di Maio

2nd Meeting of the Ariel-It Science

Claudia Di Maio

2nd Meeting of the Ariel-It Science

Μ

0.4

0.3

3671

0.01

0.2

450

Claudia Di Maio

2nd Meeting of the Ariel-It Science

Μ

0.4

0.3

450

Top cloud pressure 10^{-2} bar $\mu = 7.6$

Without prior information about the mass the model retrieves the trace gas abundances and the temperature with equal accuracy but it is not able to constrain the mean molecular weight

Impact of mass					
Parameter	ClearSky	Clouds			
Mass	\checkmark	Х			
Temperature	\checkmark	\checkmark			
Radius	\checkmark	Х			
Clouds	NAN	Х			
Trace Composition	\checkmark	\checkmark			
Main Composition	Х	Х			

Adapted from Changeat et al. 2020

 $T_{\rm eff}$ (K)3671Planet Characteristics $M_p(M_J)$ 0.01 $R_p(R_J)$ 0.2

Secondary Atmosphere

Stellar Characteristics

Spectral type

 $M_{\star}(M_{\odot})$

 $R_{\star}(R_{\odot})$

 T_p (K)

Clear Sky

Trace gases, temperature and planetary radius are accurately retrieved Degeneracy mass/mean molecular weight

Clouds

Trace gas, temperature Mean molecular weight

From Changeat et al. 2020

Claudia Di Maio

Tested Cases

Primordial Atmosphere

- G star vs M star (same Jovian planet)
 - Mass totally unknown vs Mass uncertainty 40%
- $T_p = 1450 \text{ K vs } T_p = 800 \text{ K around a G star}$
- $m_v = 8 vs m_v = 10.5$
 - G star with a Jovian Planet
 - G star with a Neptunian Planet
 - M star with a Jovian Planet
 - M star with a Neptunian Planet

Secondary Atmosphere

- M star m_v = 8 with a Super Earth (without clouds)
 - Different main composition ($\mu = 2.3, 5.2, 7.6, 11.1$)
 - Different Mass uncertainties ($\delta M_p = 10\%, 30\%, 50\%$)
- M star m_v = 10.5 with a Super Earth (without clouds)
 - Different main composition ($\mu = 2.3, 5.2, 7.6, 11.1$)
 - Different Mass uncertainties ($\delta M_p = 10\%, 30\%, 50\%$)

Stellar Characteristics						
Spectral type	G	Μ				
$M_{\star}(M_{\odot})$	1.23	0.57				
$R_{\star}(R_{\odot})$	1.19	0.59				
$T_{ m eff}~ m (K)$	6091	3900				

Planet Characteristics					
$M_p(M_J)$	0.73				
$R_p(R_J)$	1.39				
T_p (K)	1450				

Stellar Characteristics			Planet Characteristics	
Spectral type	Μ	·	$M_p(M_J)$	0.01
$M_{\star}(M_{\odot})$	0.4		$R_p(R_J)$	0.2
$R_{\star}(R_{\odot})$	0.3		T_p (K)	450
$T_{ m eff}~ m (K)$	3671			

Claudia Di Maio

of the ence

Primordial Atmosphere

Claudia Di Maio

<u>G star vs M star (Mass totally unknown vs $\delta M = 40\%$)</u>

Μ

0.57

0.59

3900

G

0.73

1.39

1450

Claudia Di Maio

G star vs M star (Mass totally unknown vs $\delta M=40\%$)

Mass totally unknown (Changeat 2020)

Claudia Di Maio

G star vs M star (Mass totally unknown vs $\delta M=40\%$)

Primordial Atmosphere

	Stellar Characteristics						
S	Spectral type	G	Μ				
	$M_\star(M_\odot)$	1.23	0.57				
	$R_{\star}(R_{\odot})$	1.19	0.59				
	$I_{\rm eff}$ (K)	6091	3900				
	Planet Char	acterist	ics				
	$M_p(M_J)$	0.73					
	$R_p(R_J)$	1.39					
	T_p (K)	1450)				
	Clear	Sky					
Ta a	Taurex retrieved correctly the atmospheric and planetary parameters						
	Clou	ıds					
Retrieved Mass is compatible at 10 with the input value for high altitude clouds							

-1.00 -1.25 -1.50 -1.75 -2.00 -2.25 -2.50 -2.75 -3.00

 $log(P_{clouds})$ (bar)

- Radius, temperature and clouds parameters are compatible at 1σ for high altitude clouds for mass uncertainties of about 40%
- The retrieved mass is compatible at 1σ when we considered a mass uncertainty of 40%.
- In this case we could be able to retrieve the mass with more accuracy.
- Retrieved mass became less accurate when the cloud pressure is lower than 10⁻² bar.
- Retrieved mass obtained for the M star is more accurate with respect to the retrieved mass of the planet around the G star

Claudia Di Maio

1.0

2nd Meeting of the Ariel-It Science

$T_p = 1450 \text{ K vs } T_p = 800 \text{ K around a G star}$

Claudia Di Maio

$T_p = 1450 \text{ K vs } T_p = 800 \text{ K around a G star}$

G0

1.04

1.19

- Retrieved mass became less accurate when the cloud pressure is lower than 10⁻² bar.
- The accuracy decrease for a planet with a lower temperature.

$\mathrm{T}_p = 1450~\mathrm{K}~\mathrm{vs}~\mathrm{T}_p = 800~\mathrm{K}$ around a G star (mass uncertainty 40%)						
Parameter	$\mathbf{T}_p = 14$	50 K	$T_p = 800 K$			
	Clear Sky	Clouds	Clear Sky	Clouds		
Mass	$\simeq 2\%$	$\simeq 15\%$	< 5%	$\simeq 10\%$		
Radius	\checkmark	\checkmark	\checkmark	\checkmark		
Temperature	\checkmark	\checkmark	\checkmark	\checkmark		
Trace Composition	\checkmark	\checkmark	\checkmark	X		
Clouds	\checkmark	\checkmark	\checkmark	Х		

 $T_{\rm eff}$ (K) 6091 m_V 7.65 Planet Characteristics $M_{\pi}(M_X)$ 0.73

Primordial Atmosphere

Stellar Characteristics

Spectral type

 $M_{\star}(M_{\odot})$

 $R_{\star}(R_{\odot})$

Clear Sky

Taurex retrieved correctly the atmospheric and planetary parameters

Clouds

Trace gas are retrieved with less accuracy for high altitude clouds. The accuracy decrease for a planet with a lower temperature.

Claudia Di Maio

G star – Jovian Planet $m_v = 8 vs m_v = 10.5$

2nd Meeting of the Ariel-It Science

Claudia Di Maio

G star – Jovian Planet $m_v = 8 \text{ vs } m_v = 10.5$

• Retrieved Mass is compatible at 1σ when we considered a G star with a higher magnitude (lower S/N).

PTI	morulal Atl	nosphere				
	Stellar Charact	teristics				
	Spectral type	G0				
	$M_{\star}(M_{\odot})$	1.04				
	$R_{\star}(R_{\odot})$	1.19				
	T_{eff} (K)	6091				
-	Planet Charac	teristics				
	$M_p(M_J)$	0.73				
	$R_p(R_J)$	1.39				
	T_p (K)	1450				
	Clear S	ky				
Taurex retrieved correctly the atmospheric and planetary parameters						
Clouds						
Tra	ace gases are ret	rieved with				

values compatible at 1σ for a star with a higher magnitude.

Claudia Di Maio

2nd Meeting of the Ariel-It Science

M star – Jovian Planet $m_v = 8 vs m_v = 10.5$

Claudia Di Maio

M star – Jovian Planet $m_v = 8 vs m_v = 10.5$

Primordial Atmosphere

Stellar Characteristics

	Spectral type	М				
	$M_{\star}(M_{\odot})$	0.4				
	$R_{\star}(R_{\odot})$	0.3				
	$T_{ m eff}~({ m K})$	3671				
	Planet Charac	teristics				
	$M_p(M_J)$	0.73				
	$R_p(R_J)$	1.39				
	T_p (K)	1450				
_	Clear S	ky				
Ta	Taurex retrieved correctly the atmospheric and planetary parameters					
	Cloud	ls				
By the s	increasing the m star we decrease all retrieved para oducing the con	agnitude of the accuracy meters still figuration of				

the forward model

• Retrieved Mass became more accurate when we considered a M star with a higher magnitude (lower S/N) with respect to the G star case.

Claudia Di Maio

Main results for a Primordial Atmosphere

G star vs M star (mass totally unknown)						
Parameter	\mathbf{G} sta	ar	M star			
1 01 0110001	Clear Sky	Clouds	Clear Sky	Clouds		
Mass	< 5%	$\simeq 70\%$	< 5%	< 20%		
Radius	\checkmark	Х	\checkmark	Х		
Temperature	\checkmark	\checkmark	\checkmark	\checkmark		
Trace Composition	\checkmark	\checkmark	\checkmark	X		
Clouds	\checkmark	X	\checkmark	X		

G star vs M star (mass uncertainty 40%)							
Parameter	\mathbf{G} sta	ar	${f M}$ star				
	Clear Sky	Clouds	Clear Sky	Clouds			
Mass	$\simeq 2\%$	$\simeq 15\%$	< 1%	< 5%			
Radius	\checkmark	\checkmark	\checkmark	\checkmark			
Temperature	\checkmark	\checkmark	\checkmark	\checkmark			
Trace Composition	\checkmark	\checkmark	\checkmark	\checkmark			
Clouds	\checkmark	\checkmark	\checkmark	\checkmark			

G star with a Jovian Planet (mass uncertainty 40%)						
Parameter	$\mathbf{m}_v =$	- 8	$\mathrm{m}_v=10.5$			
	Clear Sky	Clouds	Clear Sky	Clouds		
Mass	< 2%	$\simeq 15\%$	$\simeq 10\%$	$\simeq 10\%$		
Radius	\checkmark	\checkmark	\checkmark	\checkmark		
Temperature	\checkmark	\checkmark	\checkmark	< 20%		
Trace Composition	\checkmark	\checkmark	\checkmark	Х		
Clouds	\checkmark	\checkmark	\checkmark	Х		

M star with a Jovian Planet (mass uncertainty 40%)									
Parameter	$\mathbf{m}_v =$	- 8	$\mathbf{m}_v = 10.5$						
	Clear Sky	Clouds	Clear Sky	Clouds					
Mass	< 0.1%	< 5%	< 0.1%	$\simeq 10\%$					
Radius	\checkmark	\checkmark	\checkmark	\checkmark					
Temperature	\checkmark	\checkmark	\checkmark	\checkmark					
Trace Composition	\checkmark	\checkmark	\checkmark	\checkmark					
Clouds	\checkmark	\checkmark	\checkmark	\checkmark					

G star with a Neptunian Planet (mass uncertainty 40%)										
Parameter	$\mathbf{m}_v =$	= 8	$m_v = 10.5$							
1 drametor	Clear Sky	Clouds	Clear Sky	Clouds						
Mass	< 0.2%	$\simeq 20\%$	< 0.4%	$\simeq 50\%$						
Radius	\checkmark	\checkmark	\checkmark	\checkmark						
Temperature	\checkmark	\checkmark	\checkmark	\checkmark						
Trace Composition	\checkmark	X		X						
Clouds	\checkmark	Х	\checkmark	Х						

M star with a Neptunian Planet (mass uncertainty 40%)									
Parameter	$\mathbf{m}_v =$	- 8	$m_v = 10.5$						
	Clear Sky	Clouds	Clear Sky	Clouds					
Mass	< 0.1%	< 0.1%	< 5%	$\simeq 10\%$					
Radius	\checkmark	\checkmark	\checkmark	\sim					
Temperature	\checkmark	\checkmark	\checkmark	\checkmark					
Trace Composition	$\overline{\mathbf{v}}$	\checkmark	\checkmark	\checkmark					
Clouds	\checkmark	\checkmark	\checkmark	X					

Primordial Atmosphere

- 1. We could **use Taurex to retrieve the mass** with an accuracy ~ 10% for a clear sky planet.
- We need a estimation of the mass with an uncertainty of ~ 40% to very accurate retrieve the trace composition of the atmosphere (in particular for the CO)
- 3. We need a more precise estimation of the mass and higher S/N to correctly retrieve the trace composition of the atmosphere for a Neptunian planet around a G star in the cloudy case.

Claudia Di Maio

Ariel-It Science

Secondary Atmosphere

Claudia Di Maio

M star – Super Earth Planet $m_v = 8$

uncertainties increase.

Claudia Di Maio

M star – Super Earth Planet $m_v = 10.5$

2nd Meeting of the Ariel-It Science

S/N.

Claudia Di Maio

Main results for a Secondary Atmosphere

Parameter	$\mu=2.3$ $\mu=5.2$				$\mu = 7.6$			$\mu = 11.1$				
$\delta \mathrm{M}$	10%	30%	50%	10%	30%	50%	10%	30%	50%	10%	30%	50%
Mass	< 1%	< 1%	< 1%	< 2%	< 6%	< 45%	< 2%	< 4%	< 15%	< 1%	< 2%	< 10%
Radius	\sim	\checkmark	\checkmark	\sim	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Temperature	\sim	\checkmark	\checkmark	\sim	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Trace Comp	\sim	\checkmark	\checkmark	\sim	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Main Comp	\sim	\checkmark	\checkmark	\checkmark	\checkmark	Х	X	Х	Х	Х	Х	Х

M star Super-Earth Planet $m_v = 10.5$												
Parameter	$\mu=2.3$ $\mu=5.2$				$\mu = 7.6$				$\mu = 11.1$			
$\delta \mathrm{M}$	10%	30%	50%	10%	30%	50%	10%	30%	50%	10%	30%	50%
Mass	< 1%	< 1%	< 1%	$ \simeq 2\%$	$\simeq 18\%$	$\simeq 65\%$	< 2%	< 6%	$\simeq 18\%$	< 2%	< 6%	$\simeq 10\%$
Radius	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Temperature	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Trace Comp	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		Х	Х	X	X	Х	X
Main Comp	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	X	Х	Х	Х	Х	Х	Х

Claudia Di Maio

Conclusions

Primordial Atmosphere

- 1. We could use **Taurex to retrieve the mass with more accuracy** than that estimate with other methods (accuracy ~ 10% for a clear sky planet).
- 2. A estimation of the mass with an uncertainty ~ 40% could allow us to more accurate retrieve the trace composition of the atmosphere (in particular for the CO mix ratio)
- 3. We need a **more precise estimation of the mass and/or higher S/N** to correctly retrieve the trace composition of the atmosphere for a **Neptunian planet around a G star in the cloudy cases**.

Secondary Atmosphere

- 1. We could be able to **use Taurex to retrieve the mass with a more accuracy** than that known.
- 2. In the cases with lower S/N a more accurate estimation of the mass could not be useful to a correct retrieval of the atmospheric composition. In this cases only an increase of the S/N ratio could bring us to a correctly atmospheric retrieval.

Next steps

Claudia Di Maio

- Retrieval of the main components of a primary atmosphere in presence of clouds with less accurate estimation of the mass (from 40% to 20%)
- Try to correct the mass estimation in presence of high altitude clouds to improve the accuracy of the atmospheric retrieval
- Secondary Atmosphere cases with different altitude of clouds