

Stellar Characterisation WG

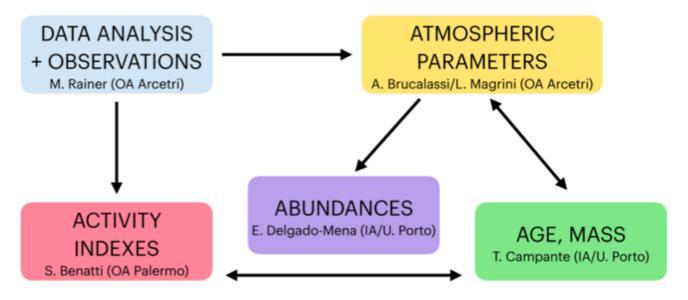
Activity indexes sub-WG

Stellar Activity

Serena Benatti

INAF – Astronomical Observatory of Palermo

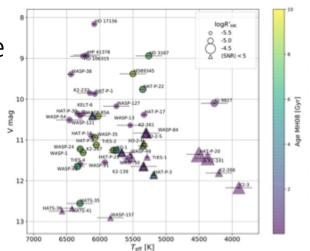
On behalf of G. Bruno, C. Danielski, G. Micela, R. Claudi, S. Wedemeyer, A. Aret, T. Eenmäe, H. Ramler (+ M. Rainer)


Activity indexes sub-WG

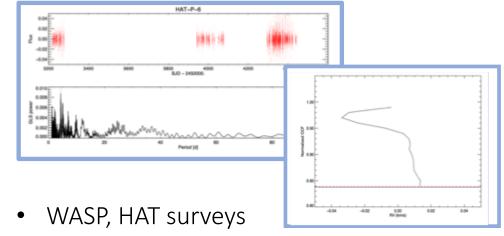
- Characterisation of the stellar activity of the planet hosts through the measurement of the activity indexes (Call H & K,)
- Measurement of the rotation periods
- Synergy with the Stellar Activity WG (more detailed investigations)

SUB-WG WORKFLOW

METHODS: model dependent and empirical



Previous works (Danielski et al. 2021)



Measurement of the logR'_{HK}

- 47 targets (matching between SWEET-Cat and ARES)
- No evidence of activity cycle
- Rotation periods and ages from empiric relations
- Analysis of the correlation among activity index and stellar/planet properties

Evaluation of the rotation periods

GAPS@HARPS-N survey

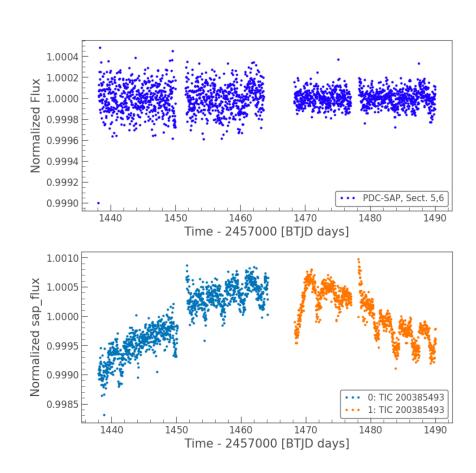
Conclusion:

The available data are not conclusive

- Need of more spectra to measure logR'_{HK} and other activity indexes
- Difficult detection of photometric modulations (few starspots for F/early G stars)
- Spectroscopic timeseries show some agreement with theoretical expectations but few and sparse data produce small significance of the detection

Analysis of TESS light curves in progress

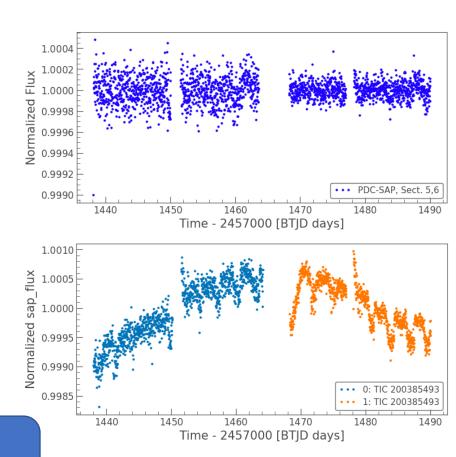
TESS observed several ARES Targets


- Continuous photometry
- TESS planets will be included in the ARES
- 1 sector = 27 days only
- Large pixel scale: potential stellar contamination
- Little photometric variability for quiet stars
- **!** SAP vs PDC-SAP

Analysis of TESS light curves in progress

TESS observed several ARES Targets

- Continuous photometry
- TESS planets will be included in the ARES
- 1 sector = 27 days only
- Large pixel scale: potential stellar contamination
- Little photometric variability for quiet stars
- ! SAP vs PDC-SAP

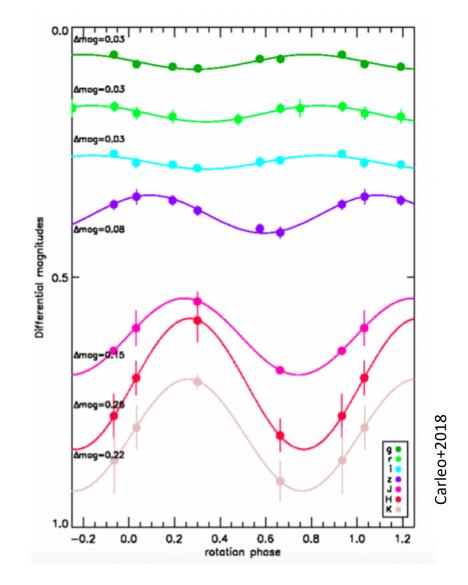


Analysis of TESS light curves in progress

TESS observed several ARES Targets

- Continuous photometry
- TESS planets will be included in the ARES
- 1 sector = 27 days only
- Large pixel scale: potential stellar contamination
- 1 Little photometric variability for quiet stars
- ! SAP vs PDC-SAP

Observing plan

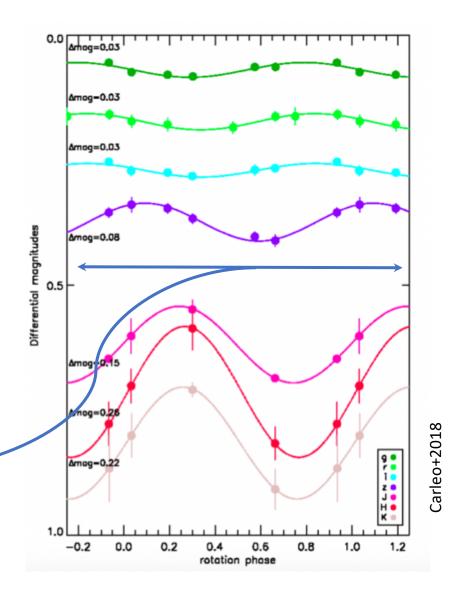

- REMIR+ROS2 @ REM (PI: G. Bruno)
 - Combined VIS+NIR photometry:
 - Temperature + filling factor for 8 targets from the Reference Sample (July/August)
- Long term program (2 yrs) with Echelle @ Asiago-Cima Ekar (PI: R. Claudi)
 Halpha and Calcium lines timeseries:
 activity and rotation periods for targets from the Reference Sample (Ongoing)
- Photometric monitoring with ESA at the ASTEP telescope in Antarctic (Stand-by)
- Photometric and spectroscopic monitoring for some selected targets from Tartu Observatory (feasibility study ongoing but good perspectives)
- Spectroscopic monitoring from Ondrejov (currently discarded: Ca II HK not in the spectrum)

(to be combined with other activity indicators)

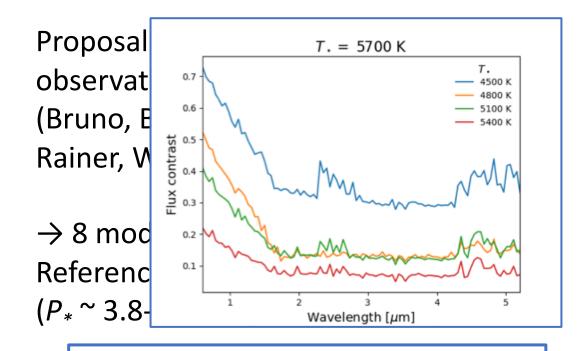
Proposal for REM visible + IR observations: 38.6 hours (Bruno, Benatti, Micela, Danielski, Rainer, Wedemeyer)

 \rightarrow 8 moderate rotators from the Ariel Reference Sample ($P_* \sim 3.8\text{-}12.6 \text{ days}, V^{\sim}9.8\text{-}12.7$)

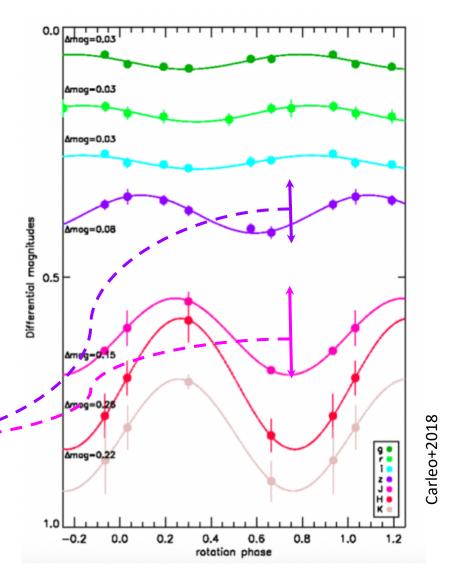
Goal: to break temperature/filling factor degeneracy with multi-color photometry

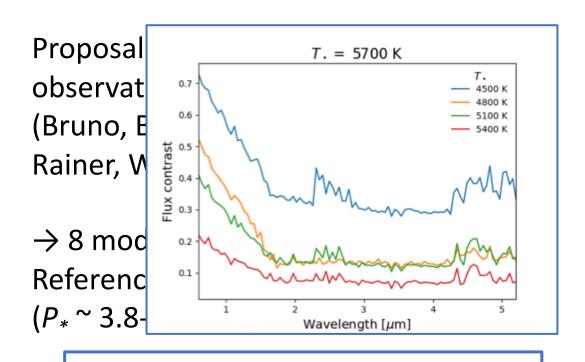


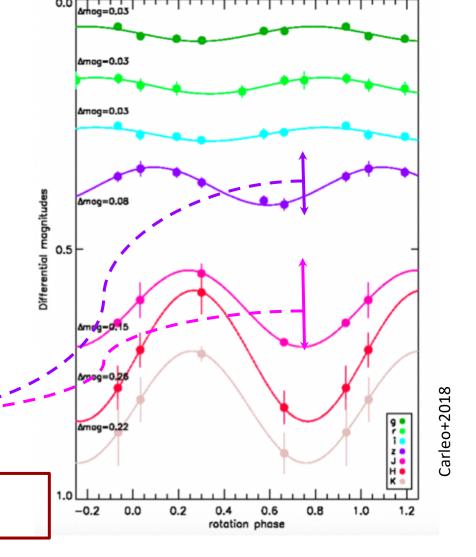
(to be combined with other activity indicators)


Proposal for REM visible + IR observations: 38.6 hours (Bruno, Benatti, Micela, Danielski, Rainer, Wedemeyer)

 \rightarrow 8 moderate rotators from the Ariel Reference Sample ($P_* \sim 3.8\text{-}12.6 \text{ days}, V^{\circ}9.8\text{-}12.7$)

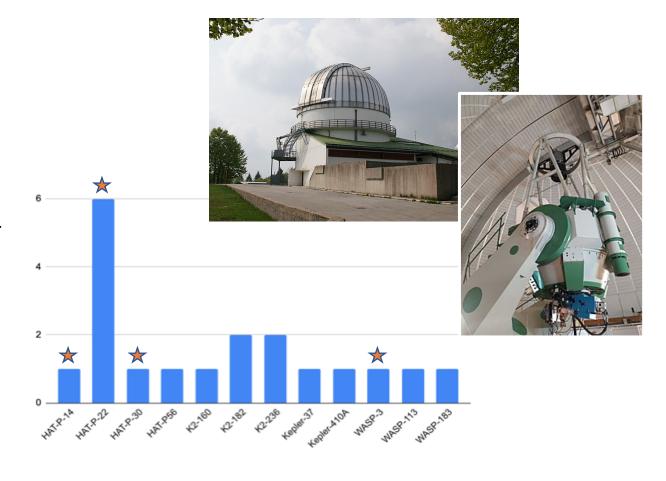

10 measurements x stellar rotation period


(to be combined with other activity indicators)


Stellar models can be fitted to color-dependent mag variations

(to be combined with other activity indicators)

Stellar models can be fitted to color-dependent mag variations

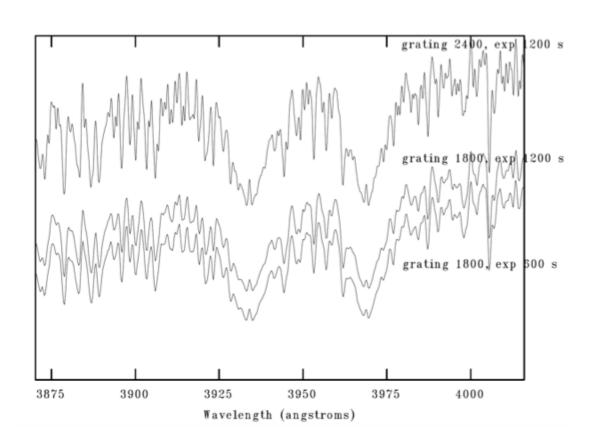


If successful, this could be extended to the new ARS

Large programme (2yrs) @ Asiago

- 1.82 m «Copernico» Telescope at Cima Ekar (Asiago, VI), PI: R. Claudi
- Echelle spectrograph (300l/mm)
- Three runs up to now (2 nights each) with time-sharing agreement with other programs
- First runs to get in touch with the telescope/instrument
- Goal: time series
- Data reduction in progress
- Next observations in August 2022

Already investigated in our previous work (useful for confirmation or undetermined periods)



Spectroscopic observations

- Tests on Kappa Cet (mv=4.8) and HD37394 (mv=6.2) with different instrumental configurations
- S-index measurements in progress
- Preferably for bright targets (mb < 8)

Photometric monitoring also available (Johnson, RI, Halpha; mv < 13)

Instrument/telescope refurbishment in 2023

Setting the target priority

New Google sheet

- Matching with the Google sheet Proposals_whole_ARES: to check for data (possibly for time series) in public archives
 - Even single spectrum can be useful to evaluate the empirical rotation period and thus the observing strategy
- Search for rotation/logR'_{HK} already known (in particular for TOIs) and homogeneous measurement of logR'_{HK} (S. Boro Saikia and C. Haswell)

Example of entries:

Planet name	Sp Type	Host v	Danielski +2021		Archive Photo- metry	Rotation Period	Prot Reference	logRhk	logRhk Reference		B-V Reference	Notes
HAT-P-22b	G5V	9.763										
					HAT-Net,							
			YES	HARPS-N	TESS	-	-	-5.01±0.06	Danielski+2021	-	-	Asiago sample
	G6V	8.17									Pecaut &	
							Benatti+	-		0.693±	Mamajek	Young star (40 Myr), no atmospheric features from ESPRESSO
DSTucA			NO	HARPS	TESS	2.95±0.02	2021	4.166±0.015	Benatti+2019	0.017	(2013)	data bec of the activity (Benatti+2021)

- Characterization of the stellar activity of the planet hosts: LogR'_{HK} (and other activity indexes) + rotation period + spots temperature/ff
- Synergy with the Ariel Stellar Activity WG (& Ariel-TESS WG)
- New photometric and spectroscopic observations planned
- Definition of a priority list to improve the observations' efficiency