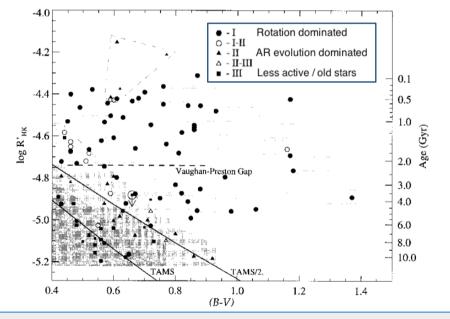
Activity-rotation, flux-flux relationships, and active-region evolution through stellar age


Jesús Maldonado INAF – Osservatorio astronomico di Palermo jesus.maldonado@inaf.it

2nd Meeting of the Italian community dedicated to Ariel's scientific preparation, May 26th, 2022

Astrophysical context

Active region (AR) growth and decay: a fundamental phenomenon to understand the generation and variability of magnetic fields

A poorly understood phenomenon: Do ARs have rather irregular lifetimes depending on their level of activity (age) and colour (mass)?

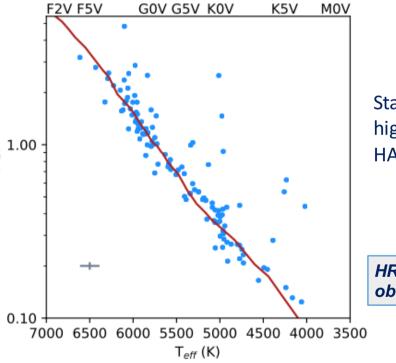
'Morphology' of Ca II variability vs. stellar parameters (from Donahue et al. 1997)

From light curves analysis:

Big starspots live longer Starspots decay more slowly on cooler stars Differential rotation can destroy the biggest ARs

Aims of this study:

- A detailed and homogeneous analysis of the chromospheric activity indexes of a large sample of stars with reliable age estimates
- Study possible mechanisms for AR growth and decay

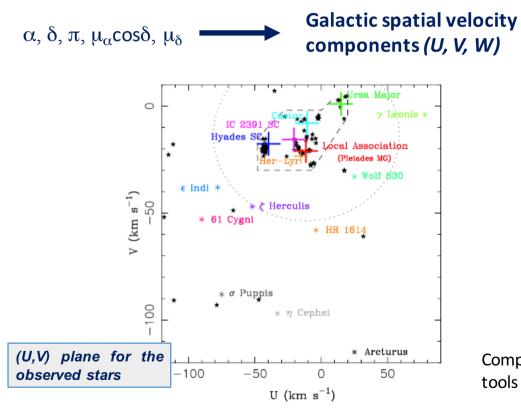

The stellar sample

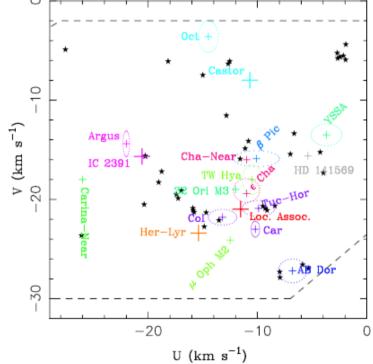
Stars in open clusters or stellar associations with precise derived ages

(most stars observed within the framework of the Global Architecture of Planetary Systems programme)

Association	N stars	Age (Myr)	F2V F5V G0'
Taurus	4	1 - 2	
Upper Sco	4	10	
Cepheus	2	10 - 20	
β Pic	2	24	
Tucana - Horologium	4	30	
Pleiades	2	112	
AB Dor	2	149	· · · · · · · · · · · · · · · · · · ·
Castor	1	200	_ 1.00
Hercules - Lyra	1	257	
Ursa Major	6	414	
Coma Berenices	6	562	1
Praesepe	20	578	1
Hyades	49	750	-
Other young stars	2	50 - 600	
NGC 752	12	1340	1 +
Old stars	13	5300 - 13900	
Sun		4579†	·
			0.10 +

Number of observed stars per cluster or moving group

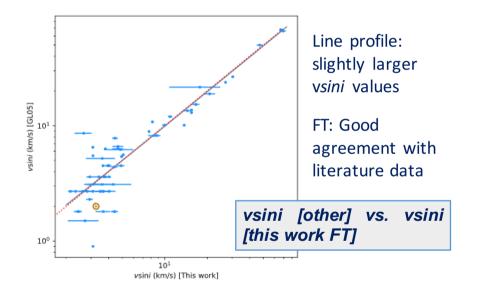

Stars required to have high-resolution optical HARPS/-N spectra


HR diagram of the observed stars

3

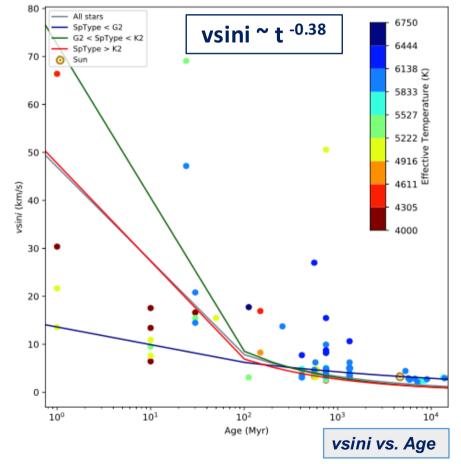
Kinematics and age

Confirmation of the young nature of the stars by its membership to Stellar Kinematic Groups and associations (advantage of *Gaia* EDR3)



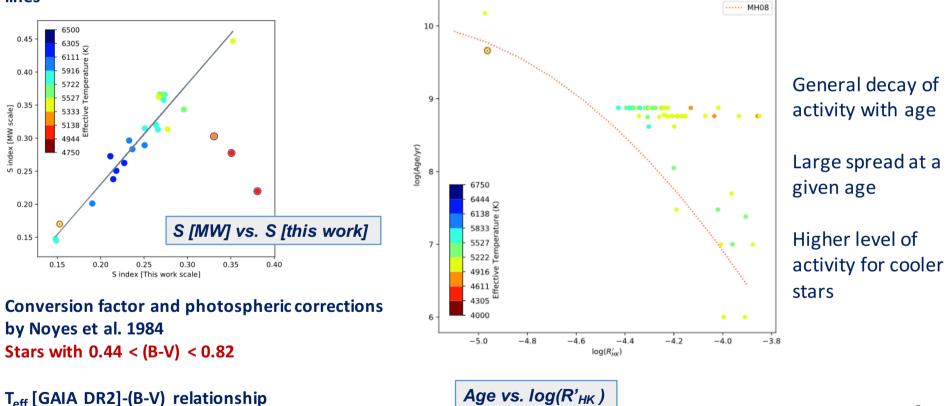
Computation of detailed membership probabilities using available tools (e.g. BANYAN $\Sigma)$ $_4$

Properties of the sample


Rotation vs. age and Sp-Type

Rotational velocities computed via the Fourier Transform (FT) technique and line profile fitting

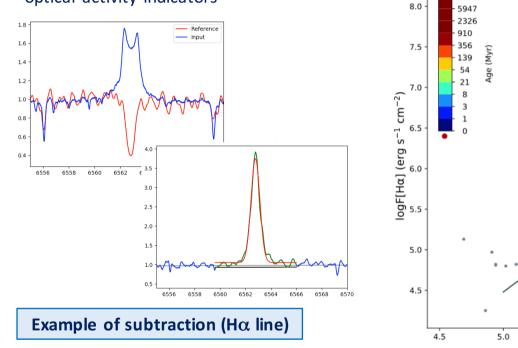
steeper tendency in hotter stars \rightarrow size of the convective zone


[few "cool" stars in the sample]

Properties of the sample

Activity level vs. age and Sp-Type

S index: Emission in the core of the Ca II H & K lines


Properties of the sample

Flux-flux relationships

5.5

15200

Spectral subtraction technique in the main optical activity indicators

From emission excesses to luminosities: Hall et al. 1996. Continuum excesses as a function of the (B-V) colour (T_{eff})

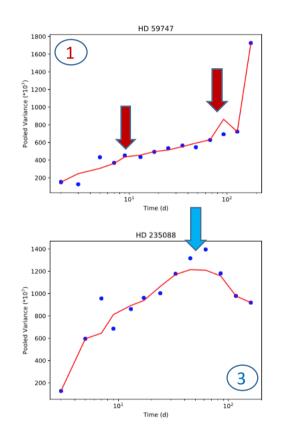
 $logF[H\alpha]$ vs. logF[Ca || K]

6.5

7.0

6.0

logF[Ca II K] (erg s⁻¹ cm⁻²)


Most stars in the *active upper* branch

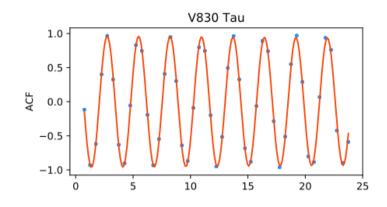
Young F, G stars share the behaviour of cooler stars

Tendency of higher H α fluxes for the youngest stars

Different Hα/Ca emission → role of different active structures

Temporal evolution of active regions

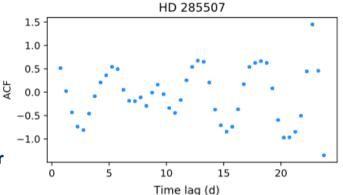
Examples of PV diagrams (S index)



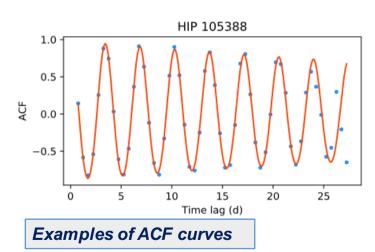
Pooled variance technique: complex patterns

- Well defined "plateau" (1)
- Nearly constant increase of variance (2)
- No plateau, increase of variance until region evolution time (3)
- High variability at short timescales (4)
- "Irregular" patterns

Temporal evolution of active regions


Autocorrelation functions (ACFs) of TESS light curves: different behaviours

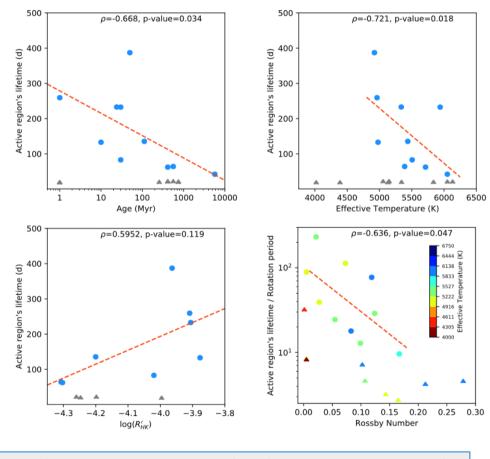
The peaks of the ACF have always the same strength, no


time decay:

ARs are stable during the time-span of the observations

The ACF shows a rather irregular form:

Complicated analysis


The ACF is periodic but shows a clear time decay:

ARs lifetimes can be estimated by modelling using an underdamped harmonic oscillator with an interpulse term (linear/exponential decay)

$$y(t) = e^{-\frac{t}{\tau_e}} \left[a \cos\left(\frac{2\pi t}{P_{\text{ACF}}}\right) + b \cos\left(\frac{4\pi t}{P_{\text{ACF}}}\right) + y_0 \right]$$

9

Temporal evolution of active regions

AR lifetime vs. Age, T_{eff}, log(R'_{HK}) and Rossby number)

AR lifetime as a function of the stellar parameters

Younger stars show longer AR lifetimes

Increasing AR lifetime with cooler temperatures and higher activity levels

ARs survive longer in stars with larger convective turnover timescales and shorter rotation period

$$R_0 = \frac{P_{\rm rot}}{\tau_{\rm conv}}$$

Caution: Low-number statistics, assumptions linked to the models

Summary (Maldonado et al. 2022, arXiv:2204.12206)

Detailed analysis of a large sample of well-known derived ages (membership to kinematic associations) Rotation and activity level (spectroscopic indexes), emission excess, photometry

Activity-rotation-age and flux-flux relationships

- o Decreasing activity and rotation with stellar age
- Higher levels of activity and lower age-decay on cooler stars
- Young F and G stars depart from the inactive stars in the flux-flux relationships

Temporal evolution of active regions

- o Complex patterns that might differ even from stars with similar characteristics, difficult to obtain ARs lifetime
- Active regions seem to live longer on younger, cooler, and more active stars