

HIM: Power spectrum modelling and foreground cleaning

Paula Soares arXiv:2008.12102

HITS 2022, 24.05.22

Outline

- 1. Modelling of HI IM power spectrum
- 2. Instrumental and systematic effects
- 3. Cosmological parameter estimation

Simplest isotropic model

inverse separation (k)

The power spectrum tells us how clustered the matter is a function of

HI background temperature $P^{\rm HI}(k) = \overline{T}_{\rm HI}^2 b_{\rm HI}^2 P_m(k)$ $\mathbf{\Omega}_{\mathrm{HI}}(z)$ **Underlying dark matter** power spectrum HI bias

Anisotropic model - RSD

The **power spectrum** tells us how clustered the matter is as a function of inverse separation (k) and angle between k and observer's line-of-sight (μ)

Fingers-of-God effect

Anisotropic model - σ_8

 $P^{\rm HI}(k,\mu) = \frac{(\overline{T}_{\rm HI}b_{\rm HI}\sigma_8 + \overline{T}_{\rm HI}f\sigma_8\mu^2)^2}{1 + (k\mu\sigma_v/H_0)^2} \frac{P_m(k)}{\sigma_8^2}$

Multiply by:

The **power spectrum** tells us how clustered the matter is as a function of inverse separation (k) and angle between k and observer's line-of-sight (μ)

> RMS of matter fluctuations within a sphere of radius 8 Mpc/h

Alcock-Paczynski effect

An effect introduced when we convert from redshift to distance

- We need to assume a *fiducial cosmology* to do this
- If this is different from the true cosmology, our power spectrum measurements will be distorted by the factors:

 $\alpha_{\perp} =$

 $\alpha_{\parallel} =$

$$rac{D_A(z)}{D_A(z)^{\mathrm{f}}} \ H(z)^{\mathrm{f}}$$

The **power spectrum** tells us how clustered the matter is as a function of inverse separation (k) and angle between k and observer's line-of-sight (μ)

Alcock-Paczynski effect $P^{\mathrm{HI}}(k^{f},\mu^{f}) = \alpha_{\parallel}^{-1}\alpha_{\perp}^{-2} \left[\frac{(\overline{T}_{\mathrm{HI}}b_{\mathrm{HI}}\sigma_{8} + \overline{T}_{\mathrm{HI}}f\sigma_{8}\mu^{2})^{2}}{1 + (k\mu\sigma_{v}/H_{0})^{2}} \frac{P_{m}(k)}{\sigma_{8}^{2}} + P_{\mathrm{SN}} \right]$ Shot noise

Anisotropic model - AP

Anisotropic model

The **power spectrum** tells us how clustered the matter is a function of

inverse separation (k) and angle between k and observer's line-of-sight (μ)

Anisotropic model

The **power spectrum** tells us how clustered the matter is a function of inverse separation (k) and angle between k and observer's line-of-sight (μ)

$$P^{\mathrm{HI}}(k^{f},\mu^{f}) = \alpha_{\mathrm{II}}^{-1} \alpha_{\mathrm{II}}^{-2} \left[\frac{(\overline{T_{\mathrm{HI}}b_{\mathrm{HI}}\sigma_{8}} + \overline{T_{\mathrm{HI}}f\sigma_{8}}\mu^{2})^{2}}{1 + (k\mu\sigma_{\nu}/H_{0})^{2}} \frac{P_{m}(k)}{\sigma_{8}^{2}} + P_{\mathrm{SN}} \right]$$
$$\vec{\theta} = \{\alpha_{\parallel}, \ \alpha_{\perp}, \ \overline{T}_{\mathrm{HI}}f\sigma_{8}, \ \overline{T}_{\mathrm{HI}}b_{\mathrm{HI}}\sigma_{8}, \ \sigma_{v}, \ P_{\mathrm{SN}}\}$$

Outline

1. Modelling of HI IM power spectrum

- 2. Instrumental and systematic effects
- 3. Cosmological parameter estimation

Telescope beam

(very idealised!):

Because the beam damps small scales, we can model it as a Gaussian

Anisotropic model - beam

The **power spectrum** tells us how clustered the matter is a function of inverse separation (k) and angle between k and observer's line-of-sight (μ)

Beam effect

 $P^{\rm HI}(k^f,\mu^f) = \tilde{B}_{\perp}^2(k,\mu)\alpha_{\parallel}^{-1}\alpha_{\perp}^{-2} \left[\frac{(\bar{T}_{\rm HI}b_{\rm HI}\sigma_8 + \bar{T}_{\rm HI}f\sigma_8\mu^2)^2}{1 + (k\mu\sigma_{\rm V}/H_0)^2} \frac{P_m(k)}{\sigma_8^2} + P_{\rm SN} \right]$

Foreground removal

- We remove foregrounds using the fact that foregrounds are smooth in frequency and very bright, and HI is not
 - However, the largest HI modes are smooth so get confused with foregrounds and removed
 - Power is damped on large scale modes

Foreground-free

Foreground model

Similar to the *beam* which damps power on **small** scales, we model foreground removal by damping power on large scales:

$$(1-\mu^2) \left[\left(1-\exp\left[-\left(\frac{k}{N_{\parallel}k_{\parallel}^{\min}}\right)^2 \mu^2 \right] \right) \right]$$

Along the line of sight direction:

- FGs are spectrally smooth
- HI signal is not smooth
 - However, the largest HI signal fluctuations that fit inside the box may appear smooth
 - So the threshold for differentiating it from FGs would be *half of the largest* fluctuations we can fit in the box
- Hence we expect $N_{\perp}, N_{\parallel}=2$

LoS, frequency direction

- Keeping these as free parameters means it can model different types and levels of foreground removal
 - However, we only tested this on **one** simulation and foreground removal method

LoS, frequency direction

Anisotropic model - foregrounds

The **power spectrum** tells us how clustered the matter is a function of inverse separation (k) and angle between k and observer's line-of-sight (μ)

> Foreground removal effect

 $P^{\rm HI}(k^{f},\mu^{f}) = \tilde{B}_{\perp}^{2}(k,\mu)\tilde{B}_{\rm FG}(k,\mu)\alpha_{\parallel}^{-1}\alpha_{\perp}^{-2} \left[\frac{(\bar{T}_{\rm HI}b_{\rm HI}\sigma_{8} + \bar{T}_{\rm HI}f\sigma_{8}\mu^{2})^{2}}{1 + (k\mu\sigma_{v}/H_{0})^{2}} \frac{P_{m}(k)}{\sigma_{8}^{2}} + P_{\rm SN} \right]$

Multipole expansion

$$P_{\ell}^{\mathrm{HI}}(k^{f}) = \frac{2\ell+1}{2}$$

We look at $\ell = 0,2,4$:

be harder to model), and should be fainter

Useful way to decompose the power spectrum using Legendre polynomials

 $\frac{2+1}{2}\int_{-1}^{1}d\mu^{f}\mathscr{L}_{\ell}(\mu^{f})P^{\mathrm{HI}}(k,\mu)$

Legendre polynomial

• As ℓ increases, we get increasingly anisotropic information (which can

Multipole expansion

and systematic effects mean this is not true:

Higher multipoles should disappear without any RSD, but instrumental

Outline

- 1. Modelling of HI IM power spectrum
- 2. Instrumental and systematic effects
- 3. Cosmological parameter estimation

Simulations

- MultiDark-Galaxies have used MultiDark-**Planck** N-body simulations and applied SAGE semi-analytical model
- Each galaxy has an associated cold gas mass, which we convert to HI mass, and then to HI brightness temperature

$$z = 0.82$$

 $L_x = L_y = L_z = 1000 \text{ Mpc } h^{-1}$
 $N_x = N_y = N_z = 225$

Simulations

- We simulate foregrounds using the Global Sky Model and also realisations of a diffuse emission model power spectrum for finer detail
- No noise is added but we instead consider this in our modelling
- Add HI + foregrounds, then smooth each frequency slice with a telescope beam of SKA-like size
- Remove foregrounds using FastICA

Simulations

Steitam

Gottlöber

Model vs. simulation

Good agreement

Model vs. simulation

Good agreement

Foreground model vs. simulation

Also good agreement between model and data (using $N_{\perp}, N_{\parallel} = 2$).

Foreground model vs. simulation

Covariance matrix

Covariance of our power spectrum:

Assumes no coupling between $-\sigma^2(k,\mu) = -\sigma^2(k,\mu)$

Covariance matrix

$C_{\ell\ell'}(k) = \frac{(2\ell+1)(2\ell'+1)}{2} \int_{-1}^{1} d\mu \, \sigma^2(k,\mu) \mathcal{L}_{\ell}(\mu) \mathcal{L}_{\ell'}(\mu)$

instrumental effects enhance these.

Don't ignore covariance between different multipoles! Systematic and

covariance) between different multipoles.

Demonstrates how the beam and FG enhance correlation (and hence)

Parameter estimation - FG free 1.2 $^{0.10}$ ' $^{0.10}$ 0.050.15 $\overline{T}_{\mathrm{HI}b_{\mathrm{HII}}\sigma_8}^{\mathrm{NII}b_{\mathrm{HII}}\sigma_8}$ 300 s 200 100 $P_{ m SN}$ 0.06 0.10 300 1.031.0 1.2 0.10 100 0.990.140 $\overline{T}_{ m HI} b_{ m HI} \sigma_8$ $\overline{T}_{ m HI} f \sigma_8$

 $lpha_{\parallel}$

 α_{\perp}

Performed an MCMC analysis using our model, covariance, and simulation.

- Unbiased results
- Sub-10% uncertainty on all parameters of interest
- Including the hexadecapole improves constraints, but needs smaller k_{max}

Parameter	$P_0 + P_2$	$P_0 + P_2 + P_4 _{\rm r}$
$lpha_{\perp}$	1.0%	0.8%
$lpha_{\parallel}$	7.6%	5.3%
$\overline{T}_{ m H{\scriptscriptstyle I}}^{''}f\sigma_8$	13.3%	8.8%
$\overline{T}_{ m H{\scriptscriptstyle I}} b_{ m H{\scriptscriptstyle I}} \sigma_8$	8.1%	5.7%

 σ_v

Parameter estimation - FG

If we don't use any foreground damping model, our results are **biased**.

If we use our foreground damping model, results are **unbiased**.

Uncertainties are larger, since we are varying more parameters.

Including the hexadecapole and letting the FG model vary, we again get an improvement on parameter constraints:

Parameter	$P_0 + P_2 + P_4 _{r}$ Varied N_{\perp}, N_{\parallel}	σ_v
$lpha_{\perp}$ $lpha_{\parallel}$	$1.1\% \\ 5.9\%$	r
$\overline{T}_{ m H{\scriptstyle I}}^{''}f\sigma_8 \ \overline{T}_{ m H{\scriptstyle I}}b_{ m H{\scriptstyle I}}\sigma_8$	13.3% 7.8%	, k

Hexacontatetrapole ($\ell = 6$)

Should be zero for no RSD, but again systematic and instrumental effects enhance it:

Key takeaways

- ★ It is possible to conduct competitive cosmological parameter estimation with HI IM, but leads to biased results if foreground removal is not properly accounted for
- ★We present a foreground removal model and show that it **unbiases** results
- ★Systematic and instrumental effects significantly impact the covariance between different multipoles, making them more correlated