Systematic Effect in HI IM

Dr. LI, Yichao

Northeastern University

HITS 2022 - Hi Intensity Mapping in Trieste

2022 May 25th

8M 1923 UA

Northeastern University

HI Intensity Mapping (IM)

HI IM for cosmology

- Provide huge observation volume for cosmology studies
- Multi redshifts
- Multi tracer
- Cosmological Large-scale structure (LSS)
- Baryon Acoustic Oscillation (BAO)
- Redshift space distortion (RSD)
- Dark Energy
- Omega HI
- primordial non-Gaussianlity
- EoR

Current stage

BINGO

- **GBT**/Parkes
- Tianlai (天籁)
- CHIME
- HIRAX
- **BINGO**
- FAST
- MeerKAT/SKA
- PAPER/HERA
- 21CMA
- LOFAR
- MWA
- Edges/PRIZM/DSL(鸿蒙)

In the Future

Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts

Square Kilometre Array Cosmology Science Working Group: David J. Bacon ¹, Richard A. Battye ² , Philip Bull ³, Stefano Camera ^{2,4,5,6}, Pedro G. Ferreira ⁷, Ian Harrison ^{2,7}, David Parkinson ⁸, Alkistis Pourtsidou ³, Mário G. Santos ^{9,10,11}, Laura Wolz ¹², Filipe Abdalla ^{13,14}, Yashar Akrami ^{15,16}, David Alonso ⁷, Sambatra Andrianomena ^{9,10,17}, Mario Ballardini ^{9,18}, José Luis Bernal ^{19,20}, Daniele Bertacca ^{21,22}, Carlos A. P. Bengaly ⁹, Anna Bonaldi ²³, Camille Bonvin ²⁴, Michael L. Brown ², Emma Chapman ²⁵, Song Chen ⁹, Xuelei Chen ²⁶, Steven Cunnington ¹, Tamara M. Davis ²⁷, Clive Dickinson ², José Fonseca ^{9,22}, Keith Grainge ², Stuart Harper ², Matt J. Jarvis ^{7,9}, Roy Maartens ^{1,9}, Natasha Maddox ²⁸, Hamsa Padmanabhan ²⁹, Jonathan R. Pritchard ²⁵, Alvise Raccanelli ¹⁹, Marzia Rivi ^{13,18}, Sambit Roychowdhury ², Martin Sahlén ³⁰, Dominik J. Schwarz ³¹, Thilo M. Siewert ³¹, Matteo Viel ³², Francisco Villaescusa-Navarro ³³, Yidong Xu ²⁶, Daisuke Yamauchi ³⁴ and Joe Zuntz ³⁵

	133				
	15m				
	64				
Meer	13.5m				
Band	v/GHz	ZI	z range		
1	0.35-1.05	0.	0.35-3		
2	0.95-1.75	C	0-0.5		

Medium-Deep Band 2 Survey

5000 deg2, 10 000 h; continuum week lensing survey HI galaxy survey / HI IM

Wide Band 1 Survey

20 000 deg2, 10 000 h; continuum survey <mark>HI IM survey</mark>

Deep SKA1-Low Survey

100 deg2, 5 000 h; EoR Wide-shallow or medium-deep or deep

- Foreground contamination
 - Model depended foreground clean

Wang, X., et. al (2006). *ApJ*, *650*(2), 529–537.

Figure 8. Frequency dependence of the different foregrounds and the cosmological signal along LOS with different galactic latitudes (given in the top-right corner of each panel). The effect of Faraday decorrelation increases as we approach the galactic plane, making the subtraction of the polarization leakage more challenging.

Alonso, D. et al. (2014) MNRAS 444, 3183

- Foreground contamination
 - Model depended foreground clean
 - Model independent foreground clean
 - PCA/SVD ICA ...

full PS

PS < 1Jy

Cosine

PS < 100 mJy

 $\begin{array}{l} N_{\rm fg}=3\\ N_{\rm fg}=4\\ N_{\rm fg}=5 \end{array}$

 10^{-1}

 $k_{\parallel} \, [h \mathrm{Mpc}^{-1}]$

HI

 $\overset{_{10^-}}{B(k^{\parallel})} B(k^{\parallel})$

 10^{-2}

 10^{-2}

- Foreground contamination
 - Model depended foreground clean
 - Model independent foreground clean
 - PCA/SVD ICA ...

Eliminating Primary Beam Effect

S. D. Matshawule et. al. arXiv:2011.10815

Ni, et al. arXiv:2204.02780

Eliminating Primary Beam Effect

• PCA results

U-Net

Table 2. Hyper parameters used in C-110	Table	2. H	Ivper	parameters	used	in	U-Net
---	-------	------	-------	------------	------	----	-------

Hyper parameter	Description	Value	
lr	learning rate	10^{-4}	
wd	weight decay	10^{-5}	
epochs	number of epochs	20	
batch_size	batch size	16	
optimizer	optimizer for training	NAdam	
act	activation function	ReLU	

deep21: a Deep Learning Method for 21cm Foreground Removal

T. Lucas Makinen, ^(b) ^{a,b,c,1} Lachlan Lancaster, ^(b) ^a Francisco Villaescusa-Navarro, ^(b) ^a Peter Melchior, ^(b) ^{a,d} Shirley Ho,^e Laurence Perreault-Levasseur, ^(b) ^{e,f,g} and David N. Spergel^{e,a}

^aDepartment of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ, 08544, USA
^bInstitut d'Astrophysique de Paris, Sorbonne Université, 98 bis Boulevard Arago, 75014 Paris, France
^cCenter for Statistics and Machine Learning, Princeton University, Princeton, NJ 08544, USA
^dCenter for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY, 10010, USA
^eDepartment of Physics, Univesité de Montréal, CP 6128 Succ. Centre-ville, Montréal, H3C 3J7, Canada
^fMila - Quebec Artificial Intelligence Institute, Montréal, Canada
E-mail: timothy.makinen@cfa.harvard.edu, lachlanl@princeton.edu, fvillaescusa-visitor@flatironinstitute.org, melchior@astro.princeton.edu, shirleyho@flatironinstitute.org, dspergel@flatironinstitute.org

Abstract. We seek to remove foreground contaminants from 21cm intensity mapping observations. We demonstrate that a deep convolutional neural network (CNN) with a UNet architecture and three-dimensional convolutions, trained on simulated observations, can effectively separate frequency and spatial patterns of the cosmic neutral hydrogen (HI) signal from foregrounds in the presence of noise. Cleaned maps recover cosmological clustering amplitude and phase within 20% at all relevant angular scales and frequencies. This amounts to a reduction in prediction variance of over an order of magnitude across angular scales, and improved accuracy for intermediate radial scales ($0.025 < k_{\parallel} < 0.075$ h Mpc⁻¹) compared to standard Principal Component Analysis (PCA) methods. We estimate epistemic confidence intervals for the network's prediction by training an ensemble of UNets. Our approach demonstrates the feasibility of analyzing 21cm intensity maps, as opposed to derived summary statistics, for upcoming radio experiments, as long as the simulated foreground model is sufficiently realistic. We provide the code used for this analysis on GitHub \mathbf{Q} , as well as a browser-based tutorial for the experiment and UNet model via the accompanying Colab notebook \mathbf{G} .

 $\label{eq:keywords: cosmology: radio-reionisation, large-scale structure-foregrounds-deep learning, signal processing$

¹Corresponding author.

Makinen, et al. arXiv:2010.15843

Failed with U-Net Only

- Due to the huge amplitude dynamic range, U-Net results in serious edge effect
- Need preprocessing step
 - PCA + U-Net
 - PCA -> Foreground
 - U-Net -> Systematic effect

PCA + U-Net

- Foreground contamination
 - Model depended foreground clean
 - Model independent foreground clean
 - PCA/SVD ICA ...
- Beam sidelobes
- Correlated noise (1/f noise)

1/f Noise

S. Harper et.al. arXiv:1711.07843

Y. Li et. al (2021) MNRAS 501(3) 4344. arXiv:2007.01767

1/f Noise Model

We measured the MeerKAT 1/f noise power spectrum density by tracking the South Celestial Point for 2.5 hours.

Remove strong correlations with TOD Singular Value Decomposition (SVD)

Before TOD SVD subtraction

After TOD SVD subtraction

Y. Li et. al (2021) MNRAS 501(3) 4344. arXiv:2007.01767

FAST HI IM GS

Xuelei Chen, Yougang Wang et. al NAOC Yichao LI, Xin Zhang et. al NEU

• Five-hundred-meter Aperture Spherical radio Telescope (FAST)

Table 1. The mean value of 10MHz temporal power spectra and 2D power spectra fitting parameters across all feeds except Feed 16 YY and Feed 9 XX, from auto correlation foreground subtraction. The errors are the r.m.s. of the fitting values across all feeds except Feed 16 YY and Feed 9 XX.

Data	$f_{k,10MHz} \times 10^2$		α_{10MHz}		α^{2D}		β^{2D}	
	XX	YY	XX	YY	XX	YY	XX	YY
raw data	0.62 ± 0.04	0.65 ± 0.03	3.16 ± 0.09	3.15 ± 0.05	1.45 ± 0.06	1.50 ± 0.20	0.40 ± 0.03	0.43 ± 0.02
20 modes removed	0.18 ± 0.05	0.17 ± 0.07	1.08 ± 0.14	1.30 ± 0.20	0.77 ± 0.11	0.78 ± 0.12	0.65 ± 0.07	0.58 ± 0.04
25 modes removed	0.10 ± 0.02	0.11 ± 0.03	1.05 ± 0.18	1.17 ± 0.17	0.72 ± 0.10	0.74 ± 0.10	0.74 ± 0.08	0.63 ± 0.08
30 modes removed	0.06 ± 0.01	0.07 ± 0.02	1.03 ± 0.15	1.12 ± 0.12	0.63 ± 0.10	0.64 ± 0.11	0.84 ± 0.08	0.72 ± 0.10

HU, W.K.; Li, Y.C. et. al 2021 MNRAS 508(2) 2897

FAST HI IM GS

Frequency 1050.03 - 1149.97 MHz

Summary

- FG is the major challenge for HI IM
- Beam sidelobes make FG hard to be subtracted
- Eliminating beam effect with U-Net network deep leaning
- Systematic 1/f noise injects correlations

Summary

- FG is the major challenge for HI IM
- Beam sidelobes make FG hard to be subtracted
- Eliminating beam effect with U-Net network deep leaning
- Systematic 1/f noise injects correlations

•Thank You !

