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HI Intensity Mapping (IM)

Ansari et. al. 1108.1474

Galaxy Survey

Intensity  Mapping Survey

MeerKAT L-band
MeerKAT UHF-band



HI IM for cosmology
• Provide huge 

observation volume for 
cosmology studies 

• Multi redshifts

• Multi tracer


• Cosmological Large-scale structure (LSS)


• Baryon Acoustic Oscillation (BAO)


• Redshift space distortion (RSD)


• Dark Energy 


• Omega HI


• primordial non-Gaussianlity


• EoR

BAO, k ~ 0.074 Mpc^-1 
IM 10k hr,  25k deg^2, dz=0.1; 

inter.  1k deg^2, dz=0.3

Intensity  Mapping Survey

Galaxy Survey
Santos, M G et, al. ArXiv 1501.03989 



Current stage
• GBT/Parkes


• Tianlai (天籁)


• CHIME

• HIRAX

• BINGO

• FAST

• MeerKAT/SKA


• PAPER/HERA

• 21CMA

• LOFAR

• MWA


• Edges/PRIZM/DSL(鸿蒙)

Tianlai (天籁)

CHIME

HIRAX

FASTBINGO

MeerKAT/SKA



In the Future
SKA dishes 133

SKA dish diameter 15m
MeerKAT dishes 64

MeerKAT dish diameter 13.5m

Band v/GHz z range
1 0.35-1.05 0.35-3
2 0.95-1.75 0-0.5

Medium-Deep Band 2 Survey 

5000 deg2, 10 000 h;

continuum week lensing survey

HI galaxy survey / HI IM

Wide Band 1 Survey 

20 000 deg2, 10 000 h;

continuum survey

HI IM survey

Deep SKA1-Low Survey 

100 deg2, 5 000 h;

EoR

Wide-shallow or medium-deep or deep



HI IM Challenges
• Foreground contamination

• Model depended foreground clean

discarded. In other words, when we talk about the contamina-
tion from point sources below, we refer only to the contribution
from unresolved point sources. To avoid having to generate in-
finitely many point sources, we also truncated the distribution
at a minimum flux Smin ¼ 10"3 mJy, since we find that the total
flux contribution has converged by then.We generate!i, the spec-
tral index of the ith point source, randomly from the Gaussian
distribution

f (!) ¼ 1ffiffiffiffiffiffiffiffiffi
(2")

p
#!

exp " (! " !0)
2

2#2
!

" #
; ð15Þ

with the spectral index ! in the range of ½!0 "!!;!0 þ!!',
where !! ¼ 5#! . To be conservative, we allow the spectral
index to vary in a fairly large region, #! ¼ 10, through our
calculations.

3.2.4. Detector Noise

We treat detector noise as white noise. In the Rayleigh-Jeans
limit, the rms detector noise in a pixel can be approximated as

#T ¼ k2

2kB
B ¼ k2

2kB

S

A
; ð16Þ

where kB is the Boltzmann constant and k is the redshifted
wavelength of 21 cm emission. The specific brightness B is
related to the point-source sensitivity S by dividing it with the
pixel area A.

At redshift 8.47, $ ¼ 150 MHz, k ¼ 2m, with the LOFAR
virtual core configuration,6 for a 5A2 pixel with 4MHz bandpass
and 1 hr integration, the sensitivity S is approximately 0.17mJy,
and from equation (16) we get

#LOFAR
T ¼ 108 mKð Þ 4 MHz

!$

$ %0:5 1 hr

t

$ %0:5
; ð17Þ

where!$ is the channel width and t is the total integration time.
Similarly, for the MWA experiment,7 a 4A6 pixel with 32 MHz
bandpass and 1 hr integration has a point-source sensitivity of
S ¼ 0:27 mJy, so we get the MWA detector noise of

#MWA
T ¼ 218 mKð Þ 32 MHz

!$

$ %0:5 1 hr

t

$ %0:5
: ð18Þ

We should mention that although at 4 MHz bandwidth, the
sensitivity for MWA is worse than that for LOFAR, MWA has a
larger bandpass and field of view. This larger field of view leads
to vastly more pixels, which is an advantage for foreground re-
moval, as we will see in later sections. The detector thermal noise
is only one of the many concerns in the experiment, such as
calibration, systematics, etc. Thus, it should not be considered
as the only criterion to judge an experiment.

The 1D power spectrum of the detector noise can then be
written as

Pdet ¼ 2"#2
T : ð19Þ

In our simulation, we consider two scenarios. One scenario as-
sumes a fiducial future experimentwithGaussian randomdetector
noise down to the #T ¼ 1mK level. The other scenario assumes
a currently achievable detector noise level of(200 mK. This is

based on equations (17) and (18) for the LOFAR and MWA
experiments, assuming 1000 hr of integration time and 4Y8 kHz
frequency resolutions, respectively.

4. RESULTS

As we showed previously in Figure 2, the signal wiggles
rapidly with frequency. This is the key advantage of removing
foregrounds in frequency space, since foregrounds are typically
relatively smooth functions of frequency.

We simulate the 21 cm signal as a Gaussian random field,
although in reality, the signal is of course highly non-Gaussian.
We make this Gaussianity approximation for simplicity, since
the key quantity that we are interested in (the power spectra of
the residual noise and foregrounds) depends mainly on the power
spectra of the signal, foregrounds, and noise, not on whether the
statistics are Gaussian or not.

4.1. Baseline Example 1: Long-Term Potential
(NoiseT Signal )

The results for the baseline example with noise much smaller
than the signal are shown in Figure 3. The top panel shows the
total contaminant in a pixel, including Galactic synchrotron ra-
diation, Galactic free-free emission, extragalactic point sources,
and detector noise with # ¼ 1 mK, which is the fiducial value
for a future-generation experiment. The foregrounds are modeled
as in the previous section, with parameters (given in the figure
caption) corresponding to a rather pessimistic assumption about
the foreground properties.

6 See http://www.lofar.org.
7 See http://web.haystack.mit.edu/MWA/MWA.html.

Fig. 3.—Spectrum in a single pixel before and after foreground cleaning. The
top panel shows the total contaminant signal, consisting of synchrotron radia-
tion (Asyn ¼ 335:4 K, !syn ¼ 2:8,!!syn ¼ 0:1), free-free emission foreground
(AA ¼ 33:5 K, !A ¼ 2:15,!!A ¼ 0:01), extragalactic point sources (#! ¼ 10),
and detector noise (# ¼ 1 mK). The middle panel has the cosmological 21 cm
signal added. The bottom panel shows the recovered 21 cm signal (dashed curve)
compared with the true simulated signal (solid curve) and the residual (recovered
minus simulated 21 cm signal; gray curve). The three horizontal black dashed lines
correspond to "0.004, 0, and 0.004 K, respectively. (Note the different vertical
axis limits.) The small-scale wiggles in the residual represent detector noise,
whereas the smoothed parabola-shaped component of the residual indicates the
error in the foreground fitting. [See the electronic edition of the Journal for a
color version of this figure.]

21 cm TOMOGRAPHY WITH FOREGROUNDS 533No. 2, 2006

Wang, X., et. al (2006). ApJ, 650(2), 529–537. 
Alonso, D. et al. (2014) MNRAS 444, 3183



• Foreground contamination

• Model depended foreground clean

• Model independent foreground clean

• PCA/SVD ICA …

HI IM Challenges

L. Wolz et. al. arXiv:2102.04946

K. Masui et al 2013 ApJ 763L 20M

C. Anderson, N. J. Luciw, Y. Li et, al 1710.00424

PCA ICA



HI IM Challenges
• Foreground contamination

• Model depended foreground clean

• Model independent foreground clean

• PCA/SVD ICA …


• Beam sidelobes 

S. D. Matshawule et. al. arXiv:2011.10815

HI IM could benefited from 
lower sidelobs of MeerKAT dish 

Jinc function sidelobs level

Measurements based sidelobs level



Eliminating Primary Beam Effect

S. D. Matshawule et. al. arXiv:2011.10815

Ni, et al. arXiv:2204.02780

                         

 

BG(ν, θ) = exp [−4 ln 2 ( θ
ΔθG(ν) )

2] ΔθG(ν) = 1.16 λ(ν)
D

BC = [ cos(1.189π/ΔθC(ν))
1 − 4(1.189π/Δθ2

C(ν)) ]
2

ΔθC(ν) = λ(ν)
D [∑8

d=0 ad ̂νd + A sin ( 2π ̂ν
T )]

CRIME



Eliminating Primary Beam Effect

• PCA results

Ni, et al. arXiv:2204.02780



U-Net

Ni, et al. arXiv:2204.02780

Makinen, et al. arXiv:2010.15843



Failed with U-Net Only
• Due to the huge amplitude dynamic range, U-Net results in serious edge effect


• Need preprocessing step


• PCA + U-Net


• PCA -> Foreground


• U-Net -> Systematic effect
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PCA + U-Net

Gaussian Beam Cosine Beam

Auto PS
C
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• Eliminating Primary Beam Effect


• Eliminate the effects of polarization leakage



HI IM Challenges
• Foreground contamination

• Model depended foreground clean

• Model independent foreground clean

• PCA/SVD ICA …


• Beam sidelobes 

• Correlated noise (1/f noise)



1/f Noise

sky correlated white

Temporal Correlation Frequency Correlation

White Noise

MeerKAT 1/f noise analysis 3

(a) (b)

Figure 1. (a): The waterfall plot of the simulated time-ordered data using the model of Eq. (12) as the input power spectrum. The simulation uses 1/f noise
parameters: fk = 0.1Hz at frequency resolution �⌫ = 1MHz, ↵ = 2.5 and different values of � as shown in each panel. � = 1 corresponds to uncorrelated
1/f noise across frequency while � ! 0 is fully correlated (one can still see a fluctuation since we cannot simulate � = 0 exactly). (b): The temporal power
spectrum density of the simulated time-ordered data as shown in Fig. (1a). The black dashed curve shows the power spectrum of pure 1/f noise simulation
(set white noise equals to 0) with frequency resolution of 0.1MHz and the solid curve shows the simulation with white noise added; The red dashed/solid
curve show the same simulations with frequency resolution reduced to 1MHz. The horizontal lines indicate the white noise level with frequency resolution
of 0.1MHz (blue) and 1MHz (green), respectively. The cross points with the vertical lines indicate the knee frequency at the corresponding frequency
resolution, which is estimated with Eq. (13). For � = 1 (fully uncorrelated), we expect the 1/f noise power spectrum to be inversely proportional to the
frequency resolution.

2.2 2-Dimensional Power Spectrum Density

The 1/f noise can potentially be correlated in frequency. We need
therefore to consider a 2-dimensional power spectrum to fully de-
scribe its statistics. This 2-D power spectrum density can be es-
timated by Fourier transforming the observed time-ordered data
along the time and frequency axes,

Ŝ(f, ⌧) =

������

s
�t�⌫

NtN⌫

Nt�1X

p=0

N⌫�1X

k=0

�d exp [�2⇡i (fp�t+ ⌧k�⌫)]

������

2

,

(8)

in which f is the temporal frequency and ⌧ is the spectroscopic
frequency (the Fourier conjugate in the frequency domain). In this
case, if we only have white noise fluctuations, Ŝ(f, ⌧) = 1. We
then build our 2-Dimensional (2D) power spectrum density model
as

Sfn(f, ⌧) = F (f)H(⌧), (9)

where F (f) describes the temporal correlation power spectrum,

F (f) =
1

�⌫

✓
fk

f

◆↵

, (10)

with fk the knee frequency defined at the frequency resolution of
�⌫). H(⌧) is the spectroscopic correlation power spectrum density,
which can be modeled as (Harper et al. 2018),

H(⌧) =

⇣
⌧0

⌧

⌘ 1��
�

, (11)

where � specifies the amount of correlation across frequencies and
⌧0 = 1/(N⌫�⌫). Combining the white noise term, the 2D power
spectrum model can be expressed as,

S(f, ⌧) = A

 
1 +

1

K�⌫

✓
fk

f

◆↵ ⇣
⌧0

⌧

⌘ 1��
�

!
, (12)

in which, K =
R
d ⌧sinc

2
(⇡�⌫⌧)

�
⌧0
⌧

�
(1��)/� . The derivation of

Eq. (12) is shown in the appendix. A ⇠ 1 due to the normalization
with T

2

sys. In our analysis, A is set as an overall amplitude parame-
ter which can be constrained by the observation data together with
f0, ↵ and ⌧0.

The knee frequency fk as a function of frequency resolution
is an important consideration for the LSS correlation signal on the
largest scale sizes. For example, if we are interested in line-of-sight
scales of ⇠ 100Mpc/h, at 900MHz (i.e. z ⇠ 0.6), this corre-
sponds to frequency scales of ⇠ 25MHz. Depending upon the
knee frequency, at the ⇠ 25MHz frequency resolution there is the
potential to detect the 1/f noise more significantly than at lower val-
ues of the frequency resolution. The knee frequency at two different
frequency resolutions, �⌫, �⌫0, is related via,

lg fk = lg fk0 +
1

↵
lg

✓
K�⌫

K0�⌫0

◆
. (13)

The derivation is shown in the appendix. We test the shift of the
knee frequency with simulated time-ordered data. Fig. (1a) shows
the waterfall plots of the simulated time-ordered data with different
frequency correlation properties. As � ! 0, the 1/f noise becomes
fully correlated over the frequency band. As � ! 1, the frequency
correlation length is reduced and the 1/f noise between different
frequencies becomes independent (down to the frequency resolu-
tion).

The corresponding temporal power spectrum of the simulated
data is shown in Fig. (1b). The black solid curve shows the power
spectrum with 0.1MHz frequency resolution, which is the raw fre-
quency resolution of the simulation; while the red curve shows the
power spectrum after averaging over 10 frequency channels. The
dashed curves show the simulation with only 1/f noise (set white
noise level to 0). The horizontal lines indicate the white noise level
with frequency resolution of 0.1MHz (blue) and 1MHz (green),
respectively. The cross points with the vertical lines indicate the
knee frequency at the corresponding frequency resolution, which is
estimated with Eq. (13). The white noise floor, as expected, is re-
duced by one order of magnitude after frequency averaging. How-
ever, the 1/f noise level behaves differently with different � val-
ues. In the case of � = 0, the 1/f noise is fully correlated over
the frequency band. The level of 1/f noise power spectrum does
not change with averaging frequency channels, but the white noise
does. The different behavior between 1/f noise and white noise re-

c� 20?? RAS, MNRAS 000, 1–??
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The power spectrum in the time direction from the extra 1/f-type
noise component can then be modelled as (Harper et al. 2018),

S
t
fn
(f, ⌫) =

1

�⌫

✓
fk

f

◆↵

, (6)

where ↵ is the spectral index of the noise. This enforces that for large
f the 1/f noise power spectrum goes to zero and the overall power
spectrum becomes dominated by white noise. Our model for the full
temporal power spectrum density function is then,

S
t
(f, ⌫) =

A

�⌫

✓
1 +

✓
fk

f

◆↵◆
, (7)

where A (⇠ 1) is as a free parameter fit together with ↵ and fk.

2.2 2-Dimensional Power Spectrum Density

The 1/f noise can potentially be correlated in frequency. We need
therefore to consider a 2-dimensional power spectrum to fully de-
scribe its statistics. This 2-D power spectrum density can be esti-
mated by Fourier transforming the observed time-ordered data along
the time and frequency axes,

Ŝ(f, ⌧) =

������

s
�t�⌫

NtN⌫

Nt�1X

p=0

N⌫�1X

k=0

�d exp [�2⇡i (fp�t+ ⌧k�⌫)]

������

2

, (8)

in which f is the temporal frequency and ⌧ is the spectroscopic fre-
quency (the Fourier conjugate in the frequency domain). In this case,
if we only have white noise fluctuations, Ŝ(f, ⌧) = 1. Following
Harper et al. (2018), we then build an empirical 2-Dimensional (2D)
power spectrum density model as

Sfn(f, ⌧) = F (f)H(⌧). (9)

Where we assume that the correlations in time and frequency are
separable and only a function of |t � t

0| and |⌫ � ⌫
0|. In reality the

system can be more complex than this, especially if we have non-
linearities and ultimately we need to check the validity of our model
through the data itself as we will see later. In the equation above,
F (f) describes the temporal correlation power spectrum,

F (f) =
1

�⌫

✓
fk

f

◆↵

, (10)

with fk the knee frequency defined at the frequency resolution of
�⌫). H(⌧) is the spectroscopic correlation power spectrum density,
which can be modeled as,

H(⌧) =

⇣
⌧0

⌧

⌘ 1��
�

, (11)

where � specifies the amount of correlation across frequencies and
⌧0 = 1/(N⌫�⌫). Combining the white noise term, the 2D power
spectrum model can be expressed as,

S(f, ⌧) = A

 
1 +

1

K�⌫

✓
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f
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, (12)

in which, K =
R
d ⌧sinc

2
(⇡�⌫⌧)

�
⌧0
⌧

�
(1��)/� . The derivation of

Eq. (12) is shown in the appendix. A ⇠ 1 due to the normalization
with T

2

sys. In our analysis, A is set as an overall amplitude parameter
which can be constrained by the observation data together with f0,
↵ and ⌧0.

The knee frequency fk as a function of frequency resolution is an
important consideration for the LSS correlation signal on the largest
scale sizes. For example, if we are interested in line-of-sight scales of
⇠ 100Mpc/h, at 900MHz (i.e. z ⇠ 0.6), this corresponds to fre-
quency scales of ⇠ 25MHz. Depending upon the knee frequency,
at the ⇠ 25MHz frequency resolution there is the potential to de-
tect the 1/f noise more significantly than at lower values of the fre-

quency resolution. The knee frequency at two different frequency
resolutions, �⌫, �⌫0, is related via,

lg fk = lg fk0 +
1

↵
lg

✓
K�⌫

K0�⌫0

◆
. (13)

The derivation is shown in the appendix. We test the shift of the
knee frequency with simulated time-ordered data. Fig. (1a) shows
the waterfall plots of the simulated time-ordered data with different
frequency correlation properties. As � ! 0, the 1/f noise becomes
fully correlated over the frequency band. As � ! 1, the frequency
correlation length is reduced and the 1/f noise between different fre-
quencies becomes independent (down to the frequency resolution).

The corresponding temporal power spectrum of the simulated
data is shown in Fig. (1b). The black solid curve shows the power
spectrum with 0.1MHz frequency resolution, which is the raw fre-
quency resolution of the simulation; while the red curve shows the
power spectrum after averaging over 10 frequency channels. The
dashed curves show the simulation with only 1/f noise (set white
noise level to 0). The horizontal lines indicate the white noise level
with frequency resolution of 0.1MHz (blue) and 1MHz (green), re-
spectively. The cross points with the vertical lines indicate the knee
frequency at the corresponding frequency resolution, which is esti-
mated with Eq. (13). The white noise floor, as expected, is reduced
by one order of magnitude after frequency averaging. However, the
1/f noise level behaves differently with different � values. In the case
of � = 0, the 1/f noise is fully correlated over the frequency band.
The level of 1/f noise power spectrum does not change with aver-
aging frequency channels, but the white noise does. The different
behavior between 1/f noise and white noise results in a higher knee
frequency value at lower frequency resolution. With � increasing,
the 1/f noise behaves more like the white noise. In the case of � = 1,
the 1/f noise if fully uncorrelated between frequencies and the power
spectrum level is reduced by one order of magnitude as well. In this
case, the knee frequency does not change with frequency resolution.

2.3 Parameter fitting

The parameters that characterise the 1/f noise can be constrained by
fitting the model against the measured noise power spectrum. We
build the �2 function both for temporal and the 2-D power spectrum
density function,

�
2

t =

⇣
hŜt

(f)i⌫ � S
t
(f)

⌘
2

�
2

Ŝt

and, �
2
=

⇣
Ŝ(f, ⌧)� S(f, ⌧)

⌘
2

�
2

Ŝ

,

(14)

in which, h i⌫ represents the average over the frequency channels
and �Ŝt , �Ŝ are the estimated errors of the temporal and 2-D power
spectrum density, respectively. The errors of the temporal power
spectrum density are estimated via the standard deviation of the
power spectrum density using different frequency channels,

�
2

Ŝt =
1

N⌫

⇣
h(Ŝt

(f))
2i⌫ � (hŜt

(f)i⌫)2
⌘
, (15)

where N⌫ is the number of frequency channels. The errors of the
2-D power spectrum density can be simply estimated via,

�
2

Ŝ
=

1

Nmode

Ŝ
2
(f, ⌧), (16)

where Nmode is the number of Fourier modes within the f � ⌧ bins.
However, it assumes a Gaussian error and the error is underestimated
in reality. Therefore, we also estimate the 2-D power spectrum den-
sity errors using a set of jackknife samples.

The jackknife sampling method (Efron 1982) is widely used in
the error estimation for large-scale structure surveys. Following the

MNRAS 000, 1–?? (20??)

Simulated TOD with different frequency correlation Temporal PS with different frequency resolution 

Temporal PS model

2D PS model

S. Harper et.al. arXiv:1711.07843

Y. Li et. al (2021) MNRAS 501(3) 4344. arXiv:2007.01767 
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(a) (b)

Figure 1. (a): The waterfall plot of the simulated time-ordered data using the model of Eq. (12) as the input power spectrum. The simulation uses 1/f noise
parameters: fk = 0.1Hz at frequency resolution �⌫ = 1MHz, ↵ = 2.5 and different values of � as shown in each panel. � = 1 corresponds to uncorrelated
1/f noise across frequency while � ! 0 is fully correlated (one can still see a fluctuation since we cannot simulate � = 0 exactly). (b): The temporal power
spectrum density of the simulated time-ordered data as shown in Fig. (1a). The black dashed curve shows the power spectrum of pure 1/f noise simulation
(set white noise equals to 0) with frequency resolution of 0.1MHz and the solid curve shows the simulation with white noise added; The red dashed/solid
curve show the same simulations with frequency resolution reduced to 1MHz. The horizontal lines indicate the white noise level with frequency resolution
of 0.1MHz (blue) and 1MHz (green), respectively. The cross points with the vertical lines indicate the knee frequency at the corresponding frequency
resolution, which is estimated with Eq. (13). For � = 1 (fully uncorrelated), we expect the 1/f noise power spectrum to be inversely proportional to the
frequency resolution.

2.2 2-Dimensional Power Spectrum Density

The 1/f noise can potentially be correlated in frequency. We need
therefore to consider a 2-dimensional power spectrum to fully de-
scribe its statistics. This 2-D power spectrum density can be es-
timated by Fourier transforming the observed time-ordered data
along the time and frequency axes,

Ŝ(f, ⌧) =
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(8)

in which f is the temporal frequency and ⌧ is the spectroscopic
frequency (the Fourier conjugate in the frequency domain). In this
case, if we only have white noise fluctuations, Ŝ(f, ⌧) = 1. We
then build our 2-Dimensional (2D) power spectrum density model
as

Sfn(f, ⌧) = F (f)H(⌧), (9)

where F (f) describes the temporal correlation power spectrum,

F (f) =
1

�⌫

✓
fk

f

◆↵

, (10)

with fk the knee frequency defined at the frequency resolution of
�⌫). H(⌧) is the spectroscopic correlation power spectrum density,
which can be modeled as (Harper et al. 2018),

H(⌧) =

⇣
⌧0

⌧

⌘ 1��
�

, (11)

where � specifies the amount of correlation across frequencies and
⌧0 = 1/(N⌫�⌫). Combining the white noise term, the 2D power
spectrum model can be expressed as,

S(f, ⌧) = A
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in which, K =
R
d ⌧sinc

2
(⇡�⌫⌧)

�
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⌧

�
(1��)/� . The derivation of

Eq. (12) is shown in the appendix. A ⇠ 1 due to the normalization
with T

2

sys. In our analysis, A is set as an overall amplitude parame-
ter which can be constrained by the observation data together with
f0, ↵ and ⌧0.

The knee frequency fk as a function of frequency resolution
is an important consideration for the LSS correlation signal on the
largest scale sizes. For example, if we are interested in line-of-sight
scales of ⇠ 100Mpc/h, at 900MHz (i.e. z ⇠ 0.6), this corre-
sponds to frequency scales of ⇠ 25MHz. Depending upon the
knee frequency, at the ⇠ 25MHz frequency resolution there is the
potential to detect the 1/f noise more significantly than at lower val-
ues of the frequency resolution. The knee frequency at two different
frequency resolutions, �⌫, �⌫0, is related via,

lg fk = lg fk0 +
1

↵
lg

✓
K�⌫

K0�⌫0

◆
. (13)

The derivation is shown in the appendix. We test the shift of the
knee frequency with simulated time-ordered data. Fig. (1a) shows
the waterfall plots of the simulated time-ordered data with different
frequency correlation properties. As � ! 0, the 1/f noise becomes
fully correlated over the frequency band. As � ! 1, the frequency
correlation length is reduced and the 1/f noise between different
frequencies becomes independent (down to the frequency resolu-
tion).

The corresponding temporal power spectrum of the simulated
data is shown in Fig. (1b). The black solid curve shows the power
spectrum with 0.1MHz frequency resolution, which is the raw fre-
quency resolution of the simulation; while the red curve shows the
power spectrum after averaging over 10 frequency channels. The
dashed curves show the simulation with only 1/f noise (set white
noise level to 0). The horizontal lines indicate the white noise level
with frequency resolution of 0.1MHz (blue) and 1MHz (green),
respectively. The cross points with the vertical lines indicate the
knee frequency at the corresponding frequency resolution, which is
estimated with Eq. (13). The white noise floor, as expected, is re-
duced by one order of magnitude after frequency averaging. How-
ever, the 1/f noise level behaves differently with different � val-
ues. In the case of � = 0, the 1/f noise is fully correlated over
the frequency band. The level of 1/f noise power spectrum does
not change with averaging frequency channels, but the white noise
does. The different behavior between 1/f noise and white noise re-

c� 20?? RAS, MNRAS 000, 1–??



1/f Noise Model
We measured the MeerKAT 1/f noise 
power spectrum density by tracking the 
South Celestial Point for 2.5 hours. 

Remove strong correlations with TOD 
Singular Value Decomposition (SVD) 
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• Five-hundred-meter Aperture Spherical radio Telescope (FAST)


• HI IM + Galaxy Survey
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Forecast for FAST HI survey 5855

The FAST has unprecedented large effective area and high
sensitivity; nevertheless, for a traditional galaxy survey (Duffy et al.
2008), the redshift at which an individual galaxy could be detected
is still very limited, and its angular resolution would be insufficient
to resolve the galaxy at high redshift. However, to map the LSS,
in principle it is not necessary to resolve individual galaxies as
traditional galaxy surveys do, instead the redshifted 21-cm line
intensity can be mapped with lower angular resolution, as is done
in the Epoch of Reionization (EoR) experiments.1 In more general
context, Chang et al. (2008) studied this mode of observation and
named it the intensity mapping method and also proposed that a
cost-effective way to survey LSS is to develop a dedicated dense
array of cylinder or small dish antennas (Ansari et al. 2008; Chang
et al. 2008; Seo et al. 2010; Ansari et al. 2012). Indeed, a number of
such small-to-mid scale experiments are undergoing, such as those
of Tianlai (Chen 2012; Xu, Wang & Chen 2015), CHIME (Bandura
et al. 2014), and HIRAX (Newburgh et al. 2016), as well as the
specially designed single dish experiment BINGO (Battye et al.
2012, 2016).

For the FAST itself, several studies used the Fisher matrix
formalism to make simple forecasts on the constraining power of
cosmological parameters by H I galaxy survey (Duffy et al. 2008)
or intensity mapping surveys (Bigot-Sazy et al. 2015; Smoot &
Debono 2017; Yohana, Li & Ma 2019).

In this paper, we make a more detailed investigation by simulating
the observed galaxies and also compare the galaxy survey and
intensity mapping. The layout of this paper is as follows. In
Section 2, we describe our model of the telescope and its receiver
feeds. the In Section 3, we present the modelling of the H I galaxies
and their observation, as well as the simulated intensity map. In
Section 4, we make Fisher matrix forecasts of the precision of power
spectrum measurement using both H I galaxy surveys and intensity
mapping surveys and also make measurement using numerical
simulation. The niche of H I galaxy survey and H I intensity mapping
survey and the effect of foreground are discussed in Section 5.
Finally, we summarize the results in Section 6.

2 THE FA ST TELESCOPE

In order to study how the FAST could survey the large-scale-
structure, we conduct mock observations with simulated sky. We
first generate a catalogue of galaxies from simulation and then
convert it into the simulated sky of H I intensity as would be observed
by FAST.

2.1 The instrument

The diameter of the FAST reflector is 500 m; the fully illuminated
aperture at any time is D = 300 m since the telescope is designed
to track objects. The beam size of the FAST is given by

θ = 1.22 × 21 cm(1 + z)
300 m

= 2.94(1 + z) arcmin (1)

for observation of the 21-cm line from redshift z.
During a drift scan, a single feed is fixed to be pointed to a

particular declination in the due north or south direction, so that in
a sidereal day, a ring of width 2.94(1 + z) arcmin centred at that

1One of us (X. C.) first realized that this mode of observation could be used
with FAST to probe the large-scale structure and presented it at a meeting
on the FAST science case held in May 2007 in Hangzhou, China.

Table 1. FAST survey receiver parameters. The tsur refers to the time needed
to finish a full drift scan of ±40 deg from the centre declination of FAST.
The Trec is the receiver noise.

Receiver Band (GHz) Beams Trec (K) tsur (days)

L-band 1.05–1.45 19 20 220
Wide-band 0.27–1.62 1 60 1211
UHF PAF (future) 0.5–1.0 81 30 135

declination is scanned. The pointing declination can be changed so
as to cover the whole observable part of the sky. The FAST site is
located at a latitude of 25◦48

′
North, and the maximum zenith angle

is 40 deg, allowing the observation of ≈50 per cent of the full sky
or about 20,000 deg2.

The FAST is equipped with a number of different feed and
receiver systems. For H I survey, the most relevant are the L-band
19-beam feed/receiver system and the wide-band receiver system.
Additionally, there are also several low-frequency receivers that
cover down to 70 MHz, which can be used for EoR observations.
Here, we shall consider mainly the first two, which are relevant
for low-or-mid redshift observations of LSS. In addition, below we
shall also consider a possible future UHF phased array feed (PAF)
system. We summarize the information of these receiver systems in
Table 1.

2.1.1 L-band 19 beam receiver system

It covers the frequency range of 1.05–1.45 GHz, and the beams
are arranged in two concentric hexagonal rings around the central
beam. The minimum spacing between beam centres is 5.73 arcmin
and is approximately constant, though for each beam the width
scales roughly as θ ∝ (1 + z). In this paper, we assume that the feed
array is tilted an angle of 23.4 deg with respect to the compass points
to increase the area covered for each scan, as was proposed for the
Commensal Radio Astronomy FasT survey (CRAFTS) (Li et al.
2018), though we note that this is not the only choice available. The
whole 19 beams span 22.8 arcmins across the north–south direction
at 1.42 GHz (calculated for the centre of the beam). The sky is
covered by shifting the whole array in declination by 21.9 arcmin
for the next scan. A drift scan of ±40 deg from the centre declination
would require about 220 strips (i.e. 220 d) to cover the region once.

2.1.2 Wide-band receiver system

For higher redshift (z > 0.35), at present the survey can be done
with a single feed wide-band receiver, which covers a frequency
from 0.27 GHz to 1.62 GHz. The receiver noise for wide-band
receiver system is ≈60 K, to have the same noise scale, and the
survey for redshift larger than 0.35 needs twice more time than the
survey for redshift smaller than 0.35. The strip width in this case
is 2.9(1 + z) arcmin, so to cover the ±40 deg sky, it would require
1211 d with single feed strip to cover the same sky region at z =
0.35, which is much less practical due to the long observation time
required.

2.1.3 The PAF receiver system for UHF band

In the future, it is worthwhile to consider equipping the FAST
telescope with a multibeam receiver at the lower frequency band
for a survey of higher redshifts. A PAF with cryogenic receiver
system would allow rapid survey of large areas of sky, and such

MNRAS 493, 5854–5870 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/493/4/5854/5801027 by university Kw
azulu-N

atal user on 16 April 2021

Wenkai Hu et al., ,  
MNRAS, 493, 5854 (2020) 



FAST 1/f Noise
8

0 1 2 3 4 5 10 15 20 25 30

Number of Modes subtracted

10
�3

10
�2

f k
,1
0
M
H
z
[H

z
]

Auto SVD XX

Auto SVD YY

Cross SVD XX

Cross SVD YY

Figure 13. The best-fit knee frequency of the temporal power spectrum
density with di�erent level of SVD subtraction. The results are averaged
over all of the feeds and the r.m.s across the feeds are plotted as error
bars, but with bad feeds excluded. The results with auto-correlation SVD
subtraction are shown in red and the the cross-correlation SVD subtraction
results are in blue. The XX polarization is shown using circles with solid
lines and the YY polarization using squares with dashed lines.

increase from 0 to 30, the plateau expands from . 4 ⇥ 10�5 Hz to
. 10�4 Hz.

We then fit the power spectrum using Eq.(6). Figure 11 and
Figure 12 show the best-fit spectral index and the knee frequency
of the time stream data averaged over the feeds, with the cross and
auto-correlation SVD subtractions, respectively. The results with
di�erent levels of SVD subtraction are shown with di�erent colors.
With the number of SVD modes subtraction increases from 0 to
30, the spectral index drops from ⇠ 3.0 to ⇠ 1.0 for both the cross
and auto-correlation SVD subtraction. The knee frequency behaves
di�erently for the auto- and cross correlations. For cross-correlation
SVD subtraction, the knee frequency is reduced from ⇠ 10�2 to
⇠ 2 ⇥ 10�3 with 20 modes subtracted, and stays at the same level
as more modes are subtracted. However, for auto-correlation, the
knee frequency goes down to ⇠ 6 ⇥ 10�4 Hz with another 10 more
modes subtraction.

The di�erences can be seen more directly in Figure 13, where
knee frequency averaged over all 19 feeds are shown in red for auto-
correlation SVD subtraction, and in blue for the cross-correlation
SVD subtraction. As the cross-correlation SVD modes subtrac-
tion removes the correlation from the sky variations, the remain-
ing correlation after 20 mode subtraction are dominated by the
system-induced 1/f noise, and its knee frequency is ⇠ 2 ⇥ 10�3

Hz. Such system-induced 1/f noise can be further removed with
auto-correlation SVD modes. With another 10 modes subtracted,
the knee frequency is reduced to ⇠ 6 ⇥ 10�4 Hz, indicating that the
system-induced 1/f-type variations are well under the thermal noise
fluctuations over 1600 seconds time scales. In the rest of the analysis,
we focus on the results with auto-correlation SVD subtraction.

In Figure 12 we can also find that the best-fit values of most
of the feeds are similar except the results from Feed 9 XX and Feed
16 YY (the outliers in Figure 12). Furthermore we plot the FAST
L-band Array of 19 feed-horns again, colored with the value of the
spectral index in Figure 14 and the knee frequency in Figure 15.
Except Feed 16 and Feed 9, the 1/f-type noise for most of the
feeds behaves similarly. It seems that there are large fluctuations
in the gain of Feed 16 YY and Feed 9 XX during the observation.
Such gain fluctuations can be reduced by removing with a few
more SVD modes, however, it does indicate that corresponding

Figure 14. The distribution on feeds of the spectral index of the 1/f-type
noise, from the fitting to the temporal power spectra. The XX and YY
polarizations are shown in the lower and upper subpanels. The deployment
and label of feeds are same as those in Figure 1.

Figure 15. The distribution on feeds of the knee frequency of the 1/f-type
noise, from the fitting to the temporal power spectra. The XX and YY
polarizations are shown in the lower and upper subpanels. The deployment
and label of feeds are same as those in Figure 1.

receiver channels are not performing properly. We will exclude the
Feed 9 XX and Feed 16 YY polarization in the following statistical
calculations. In Table 1 and Table 2 we list the mean and r.m.s.
values of the fitting parameters for the 10MHz-resolution band of all
feeds except Feed 16 and Feed 9, for the auto and cross-correlation
SVD subtraction respectively.

To check how the results depend on the number of pixels, we
have splitted the time stream data into 3 subsets, each has equal
time length. The analysis for each subset give results similar to the
whole set. We also rebin the data into time resolution of 0.2s and 8s
and compare the analysis results. The di�erences appear mostly in
the first 5 SVD modes. After the first 5 SVD modes are removed the
results are similar, though with the lower time resolution the error
is larger.

4.2 2D Power Spectrum

The 2D power spectrum density is estimated by Fourier transform-
ing the data along both the time and frequency axes. The data we
use here has time and frequency resolution of 1.0 s and 0.2 MHz.

MNRAS 000, 1–13 (2021)

1/f noise 9

Figure 16. The 2D power spectrum for Feed 1. Upper panel: YY polarization. Lower panel: XX polarization. The levels of 100, 101 102 and 103 are showed
by solid-black lines. The dashed-black lines show the fitted 2D power spectra’s same levels as measurements.

Table 1. The mean value of 10MHz temporal power spectra and 2D power spectra fitting parameters across all feeds except Feed 16 YY and Feed 9 XX, from
auto correlation foreground subtraction. The errors are the r.m.s. of the fitting values across all feeds except Feed 16 YY and Feed 9 XX.

Data fk ,10MHz ⇥ 102 ↵10MHz ↵2D �2D

XX YY XX YY XX YY XX YY
raw data 0.62 ± 0.04 0.65 ± 0.03 3.16 ± 0.09 3.15 ± 0.05 1.45 ± 0.06 1.50 ± 0.20 0.40 ± 0.03 0.43 ± 0.02

20 modes removed 0.18 ± 0.05 0.17 ± 0.07 1.08 ± 0.14 1.30 ± 0.20 0.77 ± 0.11 0.78 ± 0.12 0.65 ± 0.07 0.58 ± 0.04
25 modes removed 0.10 ± 0.02 0.11 ± 0.03 1.05 ± 0.18 1.17 ± 0.17 0.72 ± 0.10 0.74 ± 0.10 0.74 ± 0.08 0.63 ± 0.08
30 modes removed 0.06 ± 0.01 0.07 ± 0.02 1.03 ± 0.15 1.12 ± 0.12 0.63 ± 0.10 0.64 ± 0.11 0.84 ± 0.08 0.72 ± 0.10

Table 2. The mean value of 10MHz temporal power spectra and 2D power spectra fitting parameters across all feeds except Feed 16 YY and Feed 9 XX, from
cross correlation foreground subtraction. The errors are the r.m.s. of the fitting values across all feeds except Feed 16 YY and Feed 9 XX.

Data fk ,10MHz ⇥ 102 ↵10MHz ↵2D �2D

XX YY XX YY XX YY XX YY
raw data 0.62 ± 0.04 0.65 ± 0.03 3.16 ± 0.09 3.15 ± 0.05 1.45 ± 0.07 1.50 ± 0.20 0.40 ± 0.03 0.43 ± 0.02

20 modes removed 0.18 ± 0.07 0.22 ± 0.14 1.11 ± 0.18 1.12 ± 0.23 0.66 ± 0.09 0.67 ± 0.08 0.63 ± 0.05 0.59 ± 0.06
25 modes removed 0.16 ± 0.05 0.16 ± 0.05 1.12 ± 0.18 1.15 ± 0.26 0.64 ± 0.09 0.66 ± 0.08 0.65 ± 0.06 0.61 ± 0.05
30 modes removed 0.15 ± 0.05 0.15 ± 0.04 1.14 ± 0.19 1.15 ± 0.26 0.64 ± 0.09 0.65 ± 0.08 0.66 ± 0.06 0.62 ± 0.05

The results for Feed 1 are shown in the contour plots Figure 16 as
an example. From left to the right panels, it shows the 2D power
spectrum with 1, 5, 10, 20 and 30 auto-correlation SVD modes
subtracted. The results for the two polarizations are shown in the
upper and lower subpanels, respectively. The levels of 100, 101 102

and 103 are showed by solid-black lines. The dashed-black lines
show the fitted 2D power spectra of Eq. (8) at the same levels as the
measurements.

The power spectrum is peaked at the low-⌧ end, which indicates
a strong correlation across the whole frequency channels. There
are also weak correlations at smaller delay intervals, especially at
⌧ ⇠ 0.2 MHz�1, which may be due to the frequently seen chronical
fixed-frequency RFIs. To investigate the impact of such RFIs, we
ignore the mask in frequencies and estimate the correlation power
of such RFIs in frequency with our 2-D power spectrum estimator.

We found a peak at the same correlation scales (⌧ ⇠ 0.2 MHz�1)
with much stronger power. Although the correlation power at ⌧ ⇠
0.2 MHz�1 have been significantly reduced after masking such RFIs
and filling the gaps by interpolation, the correlations persists in the
data. The correlation left may raise from the residual of the RFIs and
un-identified weak RFIs, which may have similar correlation to the
ones removed. However, these strongly correlated components can
be removed by subtracting the first several SVD modes. As shown
in the second row of Figure 16, after 5 SVD modes subtracted, the
power at low ⌧-end is already highly reduced, and the correlation
across the whole frequency channels is suppressed.

We also show the corresponding cosmological scales project-
ing to the f -⌧ space as dashed-white lines in Figure 16. The parallel
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