Satellite Contamination on MeerKATs' SD HI IM

WESTERN CAPE

PhD candidate: Brandon Engelbrecht

Supervisor: Prof. M. Santos Dr. J. Wang & Dr. Y. Li & Dr. J.Fonseca

SISSA/IFPU: 25 May 2022

Artificial Satellites

Credit:

Artificial Satellites

4 global satellite systems2 regional satellite systems1 geostationary system

~ 160 satellites

Producer of Radio Frequency Interference

Artificial Satellites

4 global satellite systems2 regional satellite systems1 geostationary system

~ 160 satellites

Producer of Radio Frequency Interference

Artificial Satellites

Mega-constellations: Starlink, OneWeb, Kuiper

Communication based

Bands:

10.7-12.7 GHz Starlink 12-18 GHz Oneweb As Stuart mentioned

MeerKAT/MeerKLASS

H1 intensity mapping with MeerKAT: Calibration pipeline for multi-dish autocorrelation observations

Wang et al 2020

Potential Impact of Global Navigation Satellite Services on Total Power HI Intensity Mapping Surveys

Harper 2018

MeerKAT/MeerKLASS

H1 intensity mapping with MeerKAT: Calibration pipeline for multi-dish autocorrelation observations

<u>Wang. J 2020</u>

MeerKAT/MeerKLASS

H1 intensity mapping with MeerKAT: Calibration pipeline for multi-dish autocorrelation observations

Wang. et al 2020

Multiple observations

Larger than the HI signal

Area of interest: 1000-1500 MHz

Construct a simulation

Comprised of 3 sections:

Handling MeerKAT data (specific)

Satellite position & Telescope Beam (generic)

Constellation estimation & Fitting (generic)

Looking at 1 observation: 1551055211 2019-02-25 : 02:40:11

Method applies to each receiver

Receivers added together

All dishes averaged together

Looking at 1 observation: 1551055211 2019-02-25 : 02:40:11

A flag is applied in the pipeline

Looking at the frequency of interest

Time is noted: nd_s0 Noise diode off, scan period

Information from the gain maps

Need completeness to recalibrate the data

Information from the calibration

Need completeness to recalibrate the data.

Frequency space requires interpolation.

Information from the calibration

Need completeness to recalibrate the data.

Frequency space requires interpolation.

Applying a method from SCP data with Yi-Chao

 $G(\nu, t) = G_{\nu} \times G_t$

Removing the temporal gain contribution from the raw visibility.

$$a1_{\rm true} = \frac{RV}{G_t}$$

Removing background models from the sky

$$a1 = \frac{RV}{G_t \times BG}$$

Averaging down the temporal component.

 $a2 = a1_{\nu}$

Removing the average of a^2

$$a3 = \frac{a2}{\bar{a2}}$$

Background temperature Receiver, Elevation, Galactic, CMB

HH polarisation VV polarisation 1000 2000

1551055211: Elevation temperature for Antenna m000

1551055211: Reciever temperature for Antenna m000

A code to complete the elevation temperature [Jingying]

A similar method as the SCP

Looking at nd_s0 & Frequency choice

1551055211: Reciever temperature for Antenna m000

10

1000

2000

VV polarisation

1000

2000

Looking at nd_s0 & Frequency choice

HH polarisation

1551055211: Raw visibility map / Temporal gain / Background model for Antenna m000

1551055211: Temerature TOD [Old]

ā

Satellite positioning & Telescope beam

Second stage:

Designed to be (radio) instrument independant

Satellite Positioning:

- 1. Tracking of satellites with respect to the telescope pointing
- 2. Identifying periods when satellite contamination is inevitable

Telescope beam:

i. Flexible beam application

Satellite Tracking:

Make use of the python package <u>Skyfield</u> and the positioning data (TLE) from <u>CelesTrak</u>

STARLINK-1007	
1 44713C 19074A 22144.05382058 .00007555 00000-0 50641-3 0	1447
2 44713 53.0529 286.9678 0001557 63.1676 203.9990 15.06377160	17
STARLINK-1008	
1 44714C 19074B 22144.0317846900031975 00000-0 -21435-2 0	1448
2 44714 53.0528 287.0862 0001356 59.5787 202.8455 15.06410800	16
STARLINK-1009	
1 44715C 19074C 22144.0894084700009778 00000-0 -65539-3 0	1441
2 44715 53.0543 286.8287 0001301 76.6335 198.4981 15.06396236	11
CTIDI THE LOLO	

Credit

Satellite Tracking:

With respect to the telescope:

- 1. Timeline of observation [nd_s0]
- 2. Positional information of the telescope [Lat & Long]
- 3. Scanning strategy

25.00

2500 / visbility 2000 /

1500 litude [raw

500

r visbility un

Satellite Tracking:

HH polarisation

Frequency [MHz]

1200 1300 1400 1500 1600 1700

1000

2000

5000

6000

900

1000 1100

ds 3000

Tmp [sec 4000

Scan nine [See]

Telescope beam

Multiple beam options:

- 1. Eidos beam [Asad 2019]
- 2. Cosine beam
- 3. EMSS beam [SARAO engineers, In use]
- 4. Eidos+EMSS beam [work in progress]

Note: Assuming beam symmetry

Satellite position X Telescope beam

- 1. Each satellite's angular position is calculate with the telescope beam
- 2. We include radius information from each individual satellite.
- 3. Each constellation is the sum of all the individual satellite contributions

Constellation estimation & fitting

Third stage:

Simulating satellite signal

Constellation estimation:

- 1. Constellation signal catalogue
- 2. Chi Square fitting estimation

Constellation signal catalogue

	Sys	Band	Signal	Frequency[MHz]	Modulation	Rate(MHz)	P_t (dBW)	G_t (dBi)	Alpha
0	GPS	L1	P(Y)	1575.420	BPSK(10)	10.2300	13.5	13.5	1.5
1	GPS	L1	C/A	1575.420	BPSK(1)	1.0230	1 6.5	13.5	1.5
2	GPS	L1	L1C-D	1575.420	TMBOC(6,1,4/33)	1 .0230	10.0	10.0	1.5
3	GPS	L1	M-D	1575.420	BOC(10,5)	5.1150	18.2	13.5	1.5
4	GPS	L2	P(Y)	1227.600	BPSK(10)	10.2300	10.0	10.0	1.5
5	GPS	L2	L2CM	1227.600	BPSK(1)	0.5115	10.0	10.0	1.5
6	GPS	L2	M-D	1227.600	BOC(10,5)	5.1150	16.0	13.5	1.5
7	GPS	L5	L51	1176.450	BPSK(10)	10.2300	18.0	18.0	1.0
8	GLO	L1	L1SF(P)	1602.000	BPSK(5)	5.1100	10.0	10.0	0.6
9	GLO	L2	L2SF(P)	1245.100	BPSK(5)	5.1100	10.0	10.0	0.6
10	GLO	L2	L2OF(C/A)	1245.100	BPSK(0.5)	0.5110	10.0	10.0	0.6
11	GLO	L3	L3OC-D	1202.025	BPSK(10)	10.2300	10.0	10.0	0.6
12	GLO	L2	L2OC-D	1248.300	BPSK(1)	1.0230	13.0	12.0	0.6
13	GLO	L2	L2OC-P	1248.300	BOC(1,1)	0.5115	5.0	5.0	0.6
14	GAL	E1	OS-D(B)	1575.420	CBOC(6,1,1/11)	1.0230	10.0	10.0	0.6
15	GAL	E6	CS-P(C)	1278.750	BPSK(5)	5.1150	16.0	15.0	0.6

Satellite frequency structure

$$P_{\text{BPSK}}(v, n_c) = \frac{\operatorname{sinc}(v/[n_c f_0])}{\sqrt{n_c f_0}}$$

Sinusoidal structure

Constellation estimation: Fitting alpha terms

Fitting in smaller time chunks Far from satellite intrusion

Constellation estimation: Fitting alpha terms

Fitting in smaller time chunks

Near satellite intrusion

Simulation struggles to understand saturation

Constellation estimation: Masking data

Constellation estimation: Masking data in degrees

TOD waterfall for 5 deg

Constellation estimation: Masking data in degrees

Comparing the fitting parameter

We looked at shuffling the parameters

Comparing the non-fill mask

Structure overlay is present

Amplitude offset at the peaks

Constellation estimation: Varying the radiometer eq

Constellation estimation: Residuals of variation

Mask is filled out

Mask is **not** filled out

Discussion

- Alpha parameters partially fit the simulation to the data.
- When satellites cross the pointing, the simulation cannot fit well to the data.
- Masking
- Chi-square with sig=1 resulted in a small improvement over all chunks
- Possible concerns:
 - Delay timing between the satellite position in the simulations versus in the data might have an offset.
 - The alphas are fitting more than the satellite power, fitting for the background level as well.
 - Out of band emission.
- Looking at applying a new frequency bandpass.

The other method.....

