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Outline 

Painting HI onto the DM field for mock catalogs generation

● HI mapping model

● Full pipeline: from the primordial density field to HI field

● Deep learning extension

● Applications

● Work still to do



The CosmicAtlas project 
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GOAL 
Produce halo/galaxy/Lyman-alpha/HI IM/quasar 
mock catalogs for forthcoming surveys:
Bias Assignment Method (BAM)

Developers
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Francisco-Shu Kitaura (Ramón y Cajal Fellow, IAC/ULL)
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Collaborators
Marc Huertas-Company (IAC), Ariel Sánchez (MPE), Chia-Hsun Chuang 
(Stanford), Shadab Alam (Edinburg) Yu-Yu (Beijin), Cheng Zhao (EPFL), 
Kentaro Nagamine (Osaka), Metin Ata (Kavli-IPMU) 



The CosmicAtlas project: BAM 
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(arXiv:1806.05870)

(arXiv:1906.06109)   

(arXiv:1910.13164)   

https://arxiv.org/abs/1806.05870v2
https://arxiv.org/abs/1906.06109v3
https://arxiv.org/abs/1906.06109v3
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δ’tr ↶ 𝓑 = P(δtr|δdm, X, Y,...)

BAM learns the DM-tracers bias relation from one suitable reference simulation

● full non-linear relation (deterministic + stochastic), local & non-local, parameter-free formulation

● 1-point PDF reconstructed by construction

● P(k) constrained through iterative convolutions with an isotropic kernel K(k) 

● higher order statistics not constrained: bispectrum good proxy for the accuracy of our model

● Connection to bias PT expansion:  δtr = c0 + c1 δdm + c2 δdm
2 + . . . (incl. non-local terms) (Kitaura et al. 2022, incl FS)  

Strongly-supervised physically-motivated ML: lack of information in the model compensated by minimizing |P’tr(k)-Ptr(k)|2

(arXiv:2012.06795)



Non-local bias & cosmic web 
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Different ways to capture non-locality and the CW dependency:

● T-web (Hahn et al. 2007): knots, filaments, sheets, voids

sgn(λ1, λ2, λ3)>0, sgn(λ1, λ2, λ3)<0,λi eigenvalue of Tij= ∂i∂jφ

● Iφ-web (Kitaura et  al. 2022, incl. FS): invariants of Tij

I1 = λ1 + λ2 + λ3
I2 = λ1λ2 + λ2 λ3 + λ1λ3
I3 = λ1λ2 λ3 

Models halo bias PT up to 3rd order  + is equivalent to T-web

● Iδ-web (Heavens and Peacock 1986, Sinigaglia et al. 2021): 
Invariants of  δij = ∂i∂j δ
 

(arXiv:2012.06795)

(arXiv:2012.06795)



Hydro-BAM: cosmological volumes with baryons 
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Map gas properties in cosmological volumes onto dark matter fields 

A novel application of the BAM approach 

Goal

Full N-body + Hydro 

Hydro simulations

DM N-body + SAMs

State of the art

Predictive

Fast PM codes (FastPM, COLA, …)

Approx. gravity solvers (LPT, 2LPT, ALPT) + SAMs

Gaussian random fields  + SAMs

Calibrated

ML/DL

Domain specific methods
 

Test case: V = (100 h-1 Mpc)³ , 2 ⨯ 512³ particles interpolated on cubic 128³ cells mesh with CIC @ z=2

lcell~0.78 h-1 Mpc,  knyq ~ 4.0 h Mpc-1
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Large scales accurate, small scales not quite...

P(δHI|δdm)

Sinigaglia et al. (2021), ApJ (arXiv:2012.06795)



Hierarchical bias mapping 

Painting HI onto the DM field for mock catalogs generation

P(δHII|δdm, …) P(δHI|δHII, …)

Model HI spatial distribution and clustering with a hierarchical approach:
captures both LSS and baryon effects 

Sinigaglia et al. (2021), ApJ (arXiv:2012.06795)



PDF, gas phases and power spectrum  
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Local δ: local density only Iδ-web: local curvature tensor   δij=∂i∂jδ
T-web: knots, filaments, sheets, voids Iφ-web: tidal field tensor  Tij=∂i∂jφ
 

Sinigaglia et al. (2021), ApJ
(arXiv:2012.06795)



Bispectrum 
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Q(k1, k2, k3) = 
B(k1, k2, k3)  

P(k1)P(k2) + P(k1)P(k3) + P(k2)P(k3)  

Reduced bispectrum  

Local δ: local density only
T-web: knots, filaments, sheets, voids

Iδ-web: local curvature tensor   δij=∂i∂jδ
Iφ-web: tidal field tensor  Tij=∂i∂jφ 

     

Sinigaglia et al. (2021), ApJ (arXiv:2012.06795)



Hierarchical bias in deep learning  

Painting HI onto the DM field for mock catalogs generation

Attempt to transfer the Hydro-BAM hierarchical framework into DL

Conditional Variational Autoencoder (U-net)

Reconstruct the tracer field giving the
DM density + non-local quantities as condition

Credits: Horowitz et al. (2021)

Sinigaglia et al. (in prep.)

Try to treat DL less as a black box
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Train

Predict

White noise DM HI

HI mapping 
model

Structure 
formation 

model
HI mapping 

model

Learn and 
transfer

● Repeat at different z
● Produce lightcone
● Add instrumental effects

Structure 
formation model
(ALPT, FastPM,...)
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Applications 
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Use our framework to:

● Study bias relations and scaling relations in general

● mocks and covariance matrices: galaxies, HI IM, Lyman-alpha forests, weak lensing 

Important for multi-tracers cross-correlation!! 

galaxies at z<2, Lyman-alpha forest at z>2, …

● reconstruction of initial density field + constrained simulations

(Ata et al. (2022), Nature Astro, reconstruction of COSMOS at cosmic noon (1.5<z<3.5) with galaxies)



Future work 
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Train

Predict

White noise DM HI

Structure 
formation model
(ALPT, FastPM,...)

HI mapping 
model

Structure 
formation 

model
HI mapping 

model

Learn and 
transfer

● Repeat at different z
● Produce lightcone
● Add instrumental effects

repeat for different baryon 
models and cosmologies+

larger volumes (500 h-1 Mpc)³

include relativistic effects

+

+



Summary 

Painting HI onto the DM field for mock catalogs generation

● Model to paint HI onto DM fields in place

● Stochastic, non-local, non-linear bias formulation

● Use the model to generate mock catalogs

● Mocks of different cosmological tracers in the same box

● Deep learning extension

● Use the forward model for reconstruction

Sinigaglia et al. (2021), ApJ

Sinigaglia et al. (2022), ApJ

(arXiv:2012.06795)

(arXiv:2107.07917)



Backup slides 



Hierarchical bias mapping 
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Press release:

Sinigaglia et al. (2022), ApJ
(arXiv:2107.07917)



Lyman-alpha forest 
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Lyman-alpha forest 
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Quadrupole Hexadecapole

3D power spectrum



Lyman-alpha forest 
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Lyman-alpha forest 
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RSD modelling 
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We want to calibrate the Lyα forest in  redshift space: F (s)↶ 𝓑 = P(F(s)|Θ{δHII(s)⊗𝓚, δHI(s)})

We need to map δHII and δHI from real to redshift space on the mesh

● Consider a cell i and assign N fictitious pseudo-particles with position rj coincident to the center of the cell  

● Displace pseudo particles from real to redshift space following (Kaiser 1987, Hamilton 1998):

𝓢: sj = rj +  [bv(vdm,j · rj) r’j] / (aH) ,      r’j= ri/|ri|  ,    vdm,j = vdm,j
coh   + vdm,j

disp ,         

vdm,j
coh = vdm,i

sim  = coherent flows,      vdm,j
disp ↶  𝓝 [0,  A(1 + δi)

α] = quasi-virialized motions ,      A, α and bv free parameters

● Re-interpolate pseudo-particles on the mesh at coordinates sj  using CIC            

𝓢δdm (r)
δHII (r)

pseudo-particles
(real space)

pseudo-particles
(redshift space)

mesh (real space)
δdm (s)
δHII (s)

mesh (redshift space)

Assign N CIC


