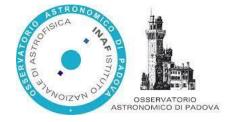
HITS 2022, 23-27 May 2022

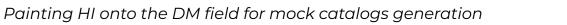
Painting HI onto the dark matter field for mock catalogs generation

Francesco Sinigaglia

francesco.sinigaglia@phd.unipd.it



- HI mapping model
- Full pipeline: from the primordial density field to HI field
- Deep learning extension
- Applications
- Work still to do



The CosmicAtlas project

GOAL

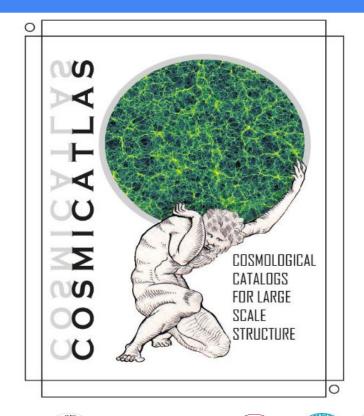
Produce halo/galaxy/Lyman-alpha/HI IM/quasar mock catalogs for forthcoming surveys: **Bias Assignment Method (BAM)**

Developers

Andrés Balaguera-Antolínez (Advanced Severo Ochoa Fellow, IAC, ULL) Francisco-Shu Kitaura (Ramón y Cajal Fellow, IAC/ULL) **Myself**

Collaborators

Marc Huertas-Company (IAC), Ariel Sánchez (MPE), Chia-Hsun Chuang (Stanford), Shadab Alam (Edinburg) Yu-Yu (Beijin), Cheng Zhao (EPFL), Kentaro Nagamine (Osaka), Metin Ata (Kavli-IPMU)



Universidad de La Laguna



The CosmicAtlas project: BAM

BAM: Bias Assignment Method to generate mock catalogs

A. Balaguera-Antolínez^{*1,2}, Francisco-Shu Kitaura^{†1,2}, Marcos Pellejero-Ibáñez^{1,2}, Cheng Zhao³ and Tom Abel⁴

One simulation to have them all: performance of the Bias Assignment Method against N-body simulations

A. Balaguera-Antolínez^{*1,2}, Francisco-Shu Kitaura^{†1,2}, M. Pellejero-Ibáñez³, Martha Lippich⁴, Cheng Zhao⁵, Ariel G. Sánchez⁴, Claudio Dalla Vecchia^{1,2}, Raúl E. Angulo^{3,6} and Martín Crocce⁷

The bias of dark matter tracers: assessing the accuracy of mapping techniques

(arXiv:1910.13164)

M. Pellejero-Ibañez *¹, A. Balaguera-Antolínez^{‡2,3}, Francisco-Shu Kitaura^{‡2,3} Raúl E. Angulo^{1,4}, Gustavo Yepes^{5,6}, Chia-Hsun Chuang⁷, Guillermo Reyes-Peraza⁸, Mathieu Autefage⁹, Mohammadjavad Vakili¹⁰ & Cheng Zhao¹¹

Painting HI onto the DM field for mock catalogs generation

(arXiv:1906.06109)

(arXiv:1806.05870)

BAM learns the **DM-tracers bias relation** from **one** suitable reference simulation

$$\delta'_{\mathrm{tr}} \cap \mathcal{B} = P(\delta_{\mathrm{tr}} | \delta_{\mathrm{dm}'} X, Y, ...)$$

BAM learns the **DM-tracers bias relation** from **one** suitable reference simulation

$$\delta'_{\mathrm{tr}} \cap \mathcal{B} = P(\delta_{\mathrm{tr}} | \delta_{\mathrm{dm}'} X, Y, ...)$$

• full non-linear relation (deterministic + stochastic), local & non-local, parameter-free formulation

BAM learns the **DM-tracers bias relation** from **one** suitable reference simulation

$$\delta'_{\mathrm{tr}} \cap \mathcal{B} = P(\delta_{\mathrm{tr}} | \delta_{\mathrm{dm}'} X, Y, ...)$$

- full non-linear relation (deterministic + stochastic), local & non-local, parameter-free formulation
- 1-point PDF reconstructed by construction

BAM learns the **DM-tracers bias relation** from **one** suitable reference simulation

$$\delta'_{\mathrm{tr}} \cap \mathcal{B} = P(\delta_{\mathrm{tr}} | \delta_{\mathrm{dm}'} X, Y, ...)$$

- full non-linear relation (deterministic + stochastic), local & non-local, parameter-free formulation
- 1-point PDF reconstructed by construction
- P(k) constrained through iterative convolutions with an isotropic kernel K(k)

BAM learns the **DM-tracers bias relation** from **one** suitable reference simulation

$$\delta'_{\mathrm{tr}} \cap \mathcal{B} = P(\delta_{\mathrm{tr}} | \delta_{\mathrm{dm}'} X, Y, ...)$$

- full non-linear relation (deterministic + stochastic), local & non-local, parameter-free formulation
- 1-point PDF reconstructed by construction
- P(k) constrained through iterative convolutions with an isotropic kernel K(k)
- higher order statistics not constrained: bispectrum good proxy for the accuracy of our model

BAM learns the **DM-tracers bias relation** from **one** suitable reference simulation

$$\delta'_{\mathrm{tr}} \cap \mathcal{B} = P(\delta_{\mathrm{tr}} | \delta_{\mathrm{dm}'} X, Y, ...)$$

- full non-linear relation (deterministic + stochastic), local & non-local, parameter-free formulation
- 1-point PDF reconstructed by construction
- P(k) constrained through iterative convolutions with an isotropic kernel K(k)
- higher order statistics not constrained: bispectrum good proxy for the accuracy of our model
- Connection to bias PT expansion: $\delta_{tr} = c_0 + c_1 \delta_{dm} + c_2 \delta_{dm}^2 + \dots$ (incl. non-local terms)

(Kitaura *et al.* 2022, incl FS) (arXiv:2012.06795)

BAM learns the **DM-tracers bias relation** from **one** suitable reference simulation

$$\delta'_{\mathrm{tr}} \cap \mathcal{B} = P(\delta_{\mathrm{tr}} | \delta_{\mathrm{dm}'} X, Y, ...)$$

- full non-linear relation (deterministic + stochastic), local & non-local, parameter-free formulation
- 1-point PDF reconstructed by construction
- P(k) constrained through iterative convolutions with an isotropic kernel K(k)
- higher order statistics not constrained: bispectrum good proxy for the accuracy of our model
- Connection to bias PT expansion: $\delta_{tr} = c_0 + c_1 \delta_{dm} + c_2 \delta_{dm}^2 + \dots$ (incl. non-local terms)

(Kitaura *et al.* 2022, incl FS) (arXiv:2012.06795)

Strongly-supervised physically-motivated ML: lack of information in the model compensated by minimizing $|P'_{tr}(k)-P_{tr}(k)|^2$

Non-local bias & cosmic web

Different ways to capture non-locality and the CW dependency:

• T-web (Hahn *et al.* 2007): knots, filaments, sheets, voids

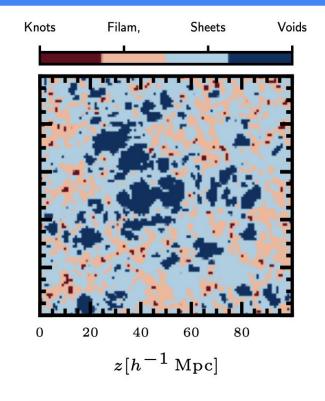
 $sgn(\lambda_1, \lambda_2, \lambda_3) > 0$, $sgn(\lambda_1, \lambda_2, \lambda_3) < 0$, λ_i eigenvalue of $T_{ij} = \partial_i \partial_j \varphi$

• I^{ϕ}-web (Kitaura *et al.* 2022, incl. FS): invariants of T_{ij} (arXiv:2012.06795)

 $I_1 = \lambda_1 + \lambda_2 + \lambda_3$ $I_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3$ $I_3 = \lambda_1 \lambda_2 \lambda_3$

Models halo bias PT up to 3rd order + is equivalent to T-web

• I^{δ} -web (Heavens and Peacock 1986, Sinigaglia et al. 2021): Invariants of $\delta_{ij} = \partial_i \partial_j \delta$ (arXiv:2012.06795)



Hydro-BAM: cosmological volumes with baryons

A novel application of the BAM approach

Goal

Map gas properties in cosmological volumes onto dark matter fields

State of the art

Predictive	Calibrated
Fast PM codes (FastPM, COLA,)	ML/DL
Approx. gravity solvers (LPT, 2LPT, ALPT) + SAMs	Domain specific methods
	Fast PM codes (FastPM, COLA,)

Gaussian random fields + SAMs

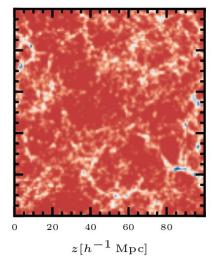
Test case: $V = (100 h^{-1} Mpc)^3$, 2 × 512³ particles interpolated on cubic 128³ cells mesh with CIC @ z=2

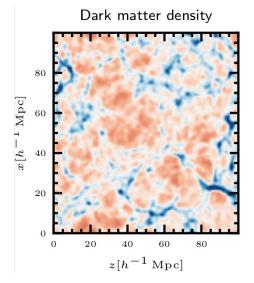
 $l_{\text{cell}} \sim 0.78 \ h^{-1} \text{ Mpc}, \ k_{\text{nyg}} \sim 4.0 \ h \text{ Mpc}^{-1}$

Hierarchical bias mapping

Sinigaglia et al. (2021), ApJ (arXiv:2012.06795)

HI number density

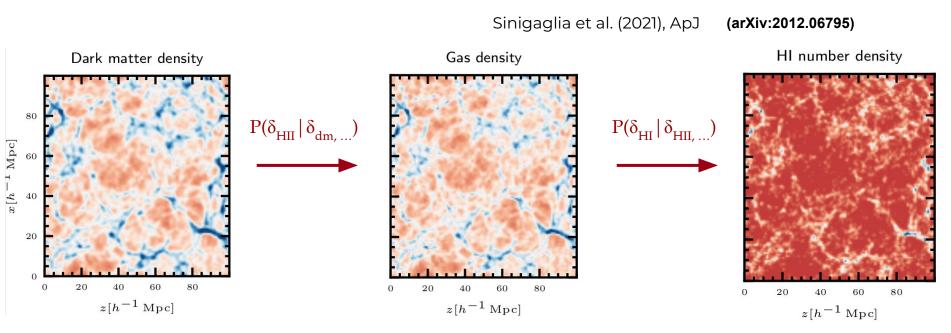




 $P(\delta_{HI} | \delta_{dm})$

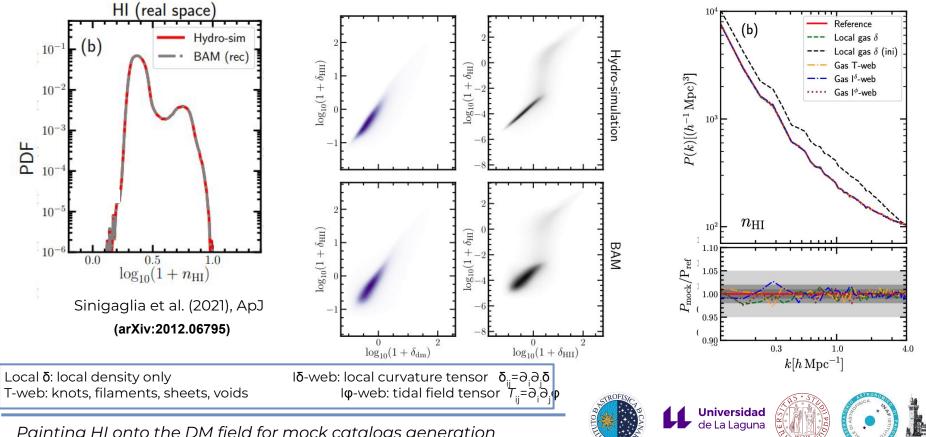
Large scales accurate, small scales not quite...

Hierarchical bias mapping

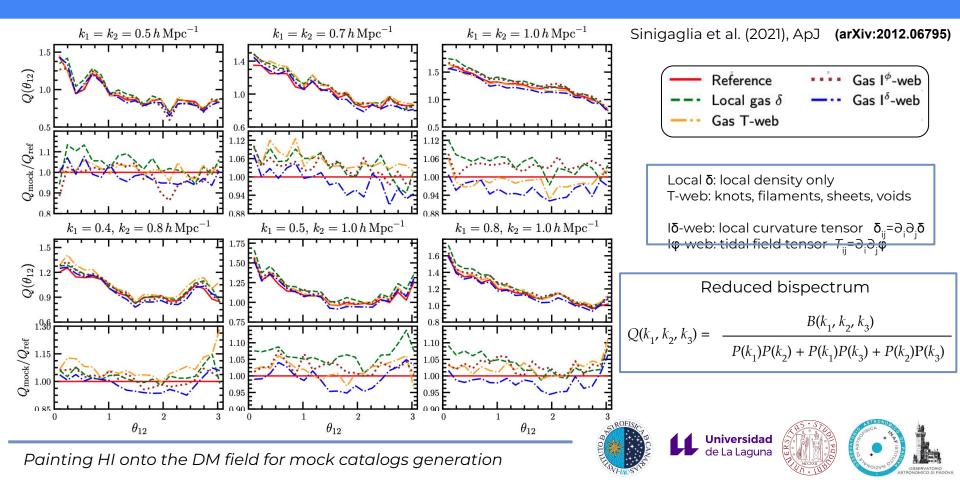


Model HI spatial distribution and clustering with a hierarchical approach: captures both LSS and baryon effects

PDF, gas phases and power spectrum

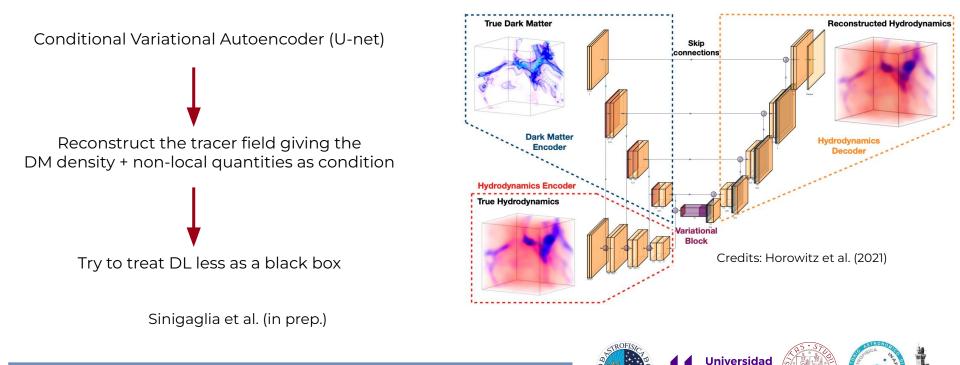


Bispectrum



Hierarchical bias in deep learning

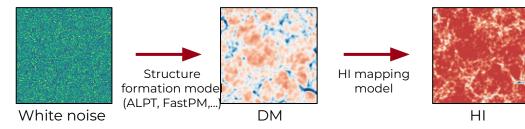
Attempt to transfer the Hydro-BAM hierarchical framework into DL



de La Laquna

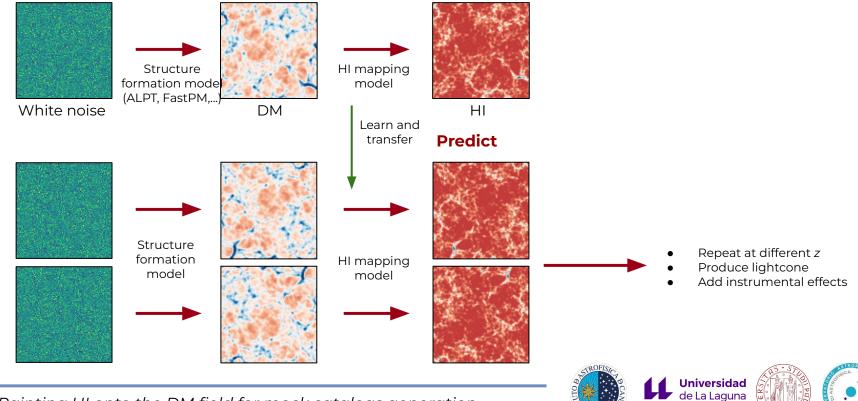
The full pipeline

Train



The full pipeline

Train



Applications

Use our framework to:

• Study bias relations and scaling relations in general

Applications

Use our framework to:

- Study bias relations and scaling relations in general
- mocks and covariance matrices: galaxies, HI IM, Lyman-alpha forests, weak lensing
 Important for multi-tracers cross-correlation!!

galaxies at z<2, Lyman-alpha forest at z>2, ...

Applications

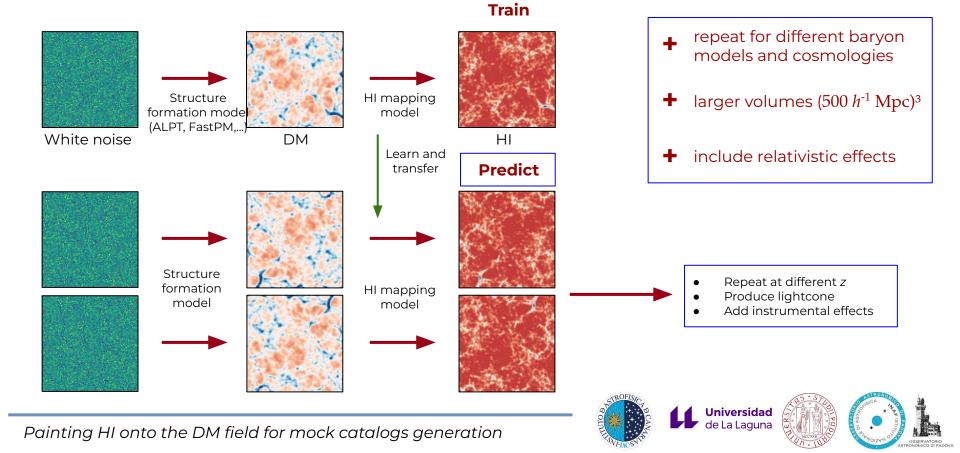
Use our framework to:

- Study bias relations and scaling relations in general
- mocks and covariance matrices: galaxies, HI IM, Lyman-alpha forests, weak lensing Important for multi-tracers cross-correlation!!
 galaxies at z<2, Lyman-alpha forest at z>2, ...
- reconstruction of initial density field + constrained simulations

(Ata et al. (2022), Nature Astro, reconstruction of COSMOS at cosmic noon (1.5<z<3.5) with galaxies)



Future work



Summary

- Model to paint HI onto DM fields in place
- Stochastic, non-local, non-linear bias formulation
- Use the model to generate mock catalogs
- Mocks of different cosmological tracers in the same box
- Deep learning extension
- Use the forward model for reconstruction

(arXiv:2107.07917)

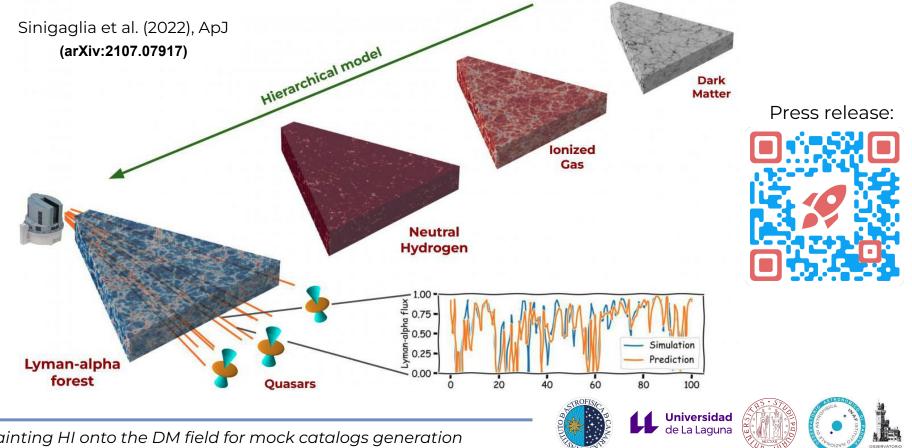
Sinigaglia et al. (2021), ApJ

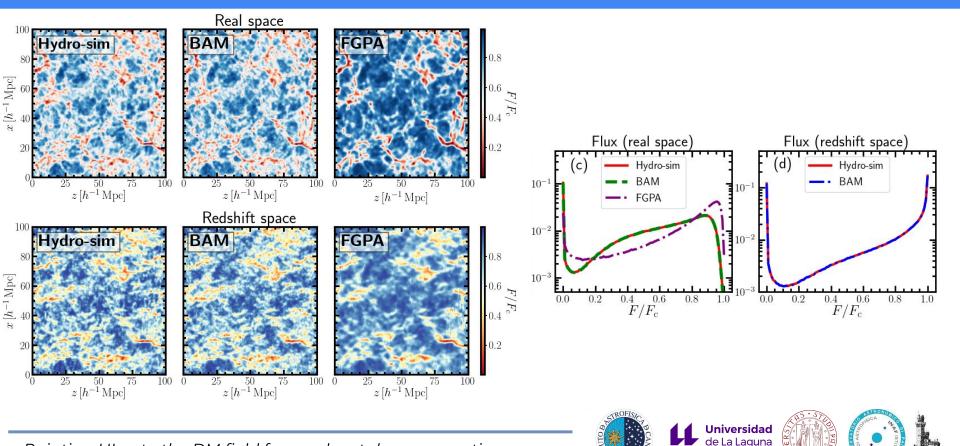
(arXiv:2012.06795)

Sinigaglia et al. (2022), ApJ

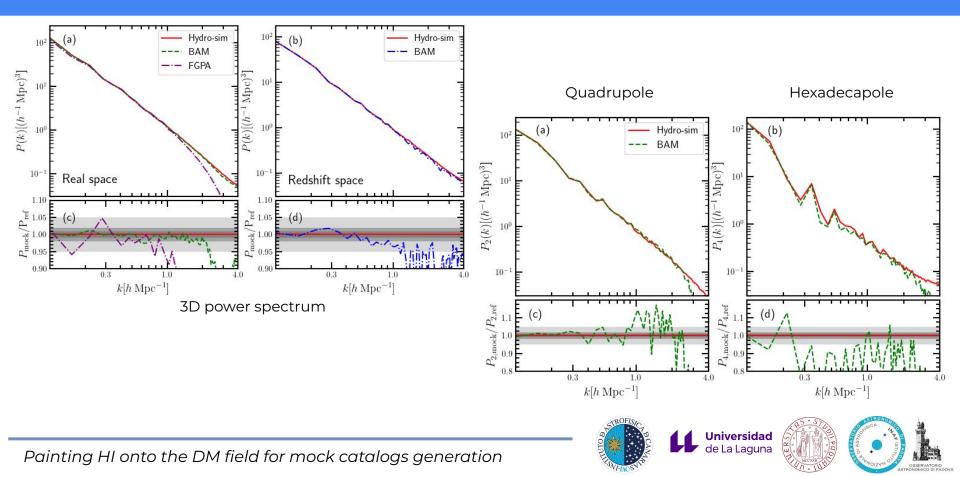
Backup slides

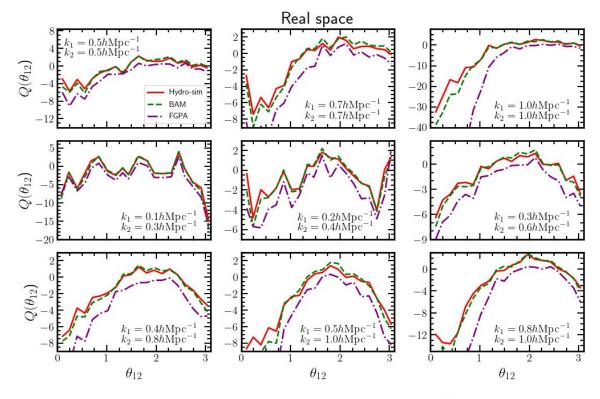
Hierarchical bias mapping

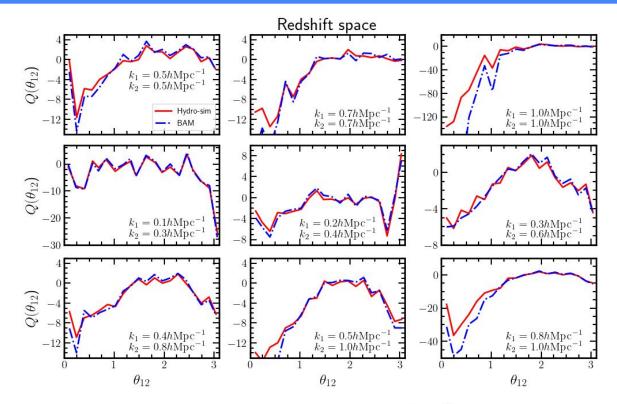




SSERVATORIO







Painting HI onto the DM field for mock catalogs generation

OSSERVATORIO

RSD modelling

We want to calibrate the Ly α forest in redshift space: $F(\mathbf{s}) \cap \mathcal{B} = P(F(\mathbf{s}) | \Theta[\delta_{HII}(\mathbf{s}) \otimes \mathcal{K}, \delta_{HI}(\mathbf{s})])$ We need to map δ_{HII} and δ_{HI} from real to redshift space on the mesh

- Consider a cell *i* and assign N fictitious pseudo-particles with position \mathbf{r}_i coincident to the center of the cell
- Displace pseudo particles from real to redshift space following (Kaiser 1987, Hamilton 1998): $S: \mathbf{s}_j = \mathbf{r}_j + [b_v(\mathbf{v}_{dm,j} \cdot \mathbf{r}_j) \mathbf{r}'_j] / (aH), \quad \mathbf{r}'_j = \mathbf{r}_j / |\mathbf{r}_j|, \quad \mathbf{v}_{dm,j} = \mathbf{v}_{dm,j}^{coh} + \mathbf{v}_{dm,j}^{disp},$ $\mathbf{v}_{dm,j}^{coh} = \mathbf{v}_{dm,j}^{sim}$ = coherent flows, $\mathbf{v}_{dm,j}^{disp} \in \mathcal{N}[0, A(1 + \delta_j)^{\alpha}]$ = quasi-virialized motions, A, α and b_v free parameters
- Re-interpolate pseudo-particles on the mesh at coordinates \boldsymbol{s}_{i} using CIC

