A potential HI intensity mapping project with Chinese space VLBI telescopes

Jingying Wang Shanghai Astronomical Observatory (SHAO), Chinese Academy of Sciences (CAS) 2022-05-23

astro.jywang@gmail.com

background information

HI intensity mapping

you must already know...

VLBI is the highest angular resolution observation technique to date and has already made impressive achievements in astrophysics, astrometry, and deep space exploration.

Chinese VLBI Network (CVN)

headquarter

@ SHAO

video: https://www.youtube.com/watch?v=q35djQdc3WU

Space VLBI

٠

٠

- The highest resolution of ground-based VLBI is limited by the diameter of the Earth, and one way to obtain higher resolution is to launch radio telescopes into space to form space-ground or space-based VLBI arrays together with ground-based or other space-based telescopes.
- With a clean electromagnetic environment, space-based radio telescopes can also avoid artificial radio interference on Earth and absorption of lowfrequency signals by the Earth's atmosphere, thus reducing the data calibration difficulties that have long plagued radio astronomers and improving the quality of observations.

Space VLBI

VSOP (VLBI Space Observatory Programme) led by Japan (1997-2005) 1.6, 5 GHz RadioAstron led by Russia (2011-2019) 0.3, 1.6, 5, 22 GHz

What will happen

Chinese space VLBI (led by SHAO, CAS)

- launch two 30-meter aperture radio telescopes to space
- operate at 30 MHz-1.7 GHz
- observation modes:
 - independently observe in space in single-dish mode;
 - form a space-space baseline;
 - a space-ground VLBI network together with FAST and SKA telescopes

Chinese space VLBI time line: launch in 2026 designed life period: 8 years orbital period: 33.15 hours frequency bands: 30-120 MHz 130-170 MHz 310-350 MHz 580-1150 MHz 1000-1700 MHz

two orbit planes are vertical to each other Earth Inertial Z th Ingrisial Atial Y

Chinese space VLBI

4+1 goals:

- HI intensity mapping
- mechanisms of outflow from supermassive black holes
- acceleration and collimation mechanisms of AGN jets
- exoplanet formation and habitability
- micro-arcsecond radio celestial sphere reference frame

about HI intensity mapping: what we are suffering

RFI (satellites + local)

Fraction of time flagged for baselines <1 km and >1 km for 4hr track (XX pol)

RFI (satellites + local)

at last we only have 973.2 < v < 1014.6 MHz (0.40 < z < 0.46)

- RFI (satellites + local)
- atmosphere

•

ground pickup

- RFI (satellites + local)
- atmosphere
- ground pickup
- weather (lightning)
- beam changing (elevation)

about HI intensity mapping:

what we can expect

A RFI free window in L-band we can focus on 0.1<z<0.5 (1290-947 MHz) and try 0.5<z<1.0 (947-710 MHz)

Types of maps

- Point map
 - -Sit, Move, Sit, Move, etc.
- On-The-Fly Mapping
 - •Mangum, Emerson, Greisen 2008, Astro& Astroph.
 - •Slew a column or row while collecting data
 - Move to next column row
 - Basket weave
 - Should oversample ~3x Nyquist along direction of slew

1000 hrs, 5000 deg2

code from Ze and Alkistis

https://github.com/meerklass/MeerKLASS/

10000 hrs, 5000 deg2

0.1<z<0.5 (1290-947 MHz)

• we have 10000 hrs

•

• focus on dark energy (thanks Marta and Mario)

0.5<z<1.0 (947-710 MHz)

- limited by current proposed time 10000 hrs
 - cross-correlation with ground-based HI IM data

more information (just for fun)

we have a Uber

we have wifi

地面站名称	地理位置	所属机构	天线口径	工作频段
密云站	北京密云 Beijing	中科院 CAS	12 米	S/X
三亚站	海南三亚 Hainan	中科院 CAS	12 米	S/X
喀什站	新疆喀什 Xinjiang	中科院 CAS	12 米	S/X
Kourou 站	French Guiana	ESA	15 米	S/X
Villafranca 站	Spain	ESA	15 米	S/X
Perth 站	Australia	ESA	15 米	S/X

How to pack/unpack the luggage

To be continue...

astro.jywang@gmail.com