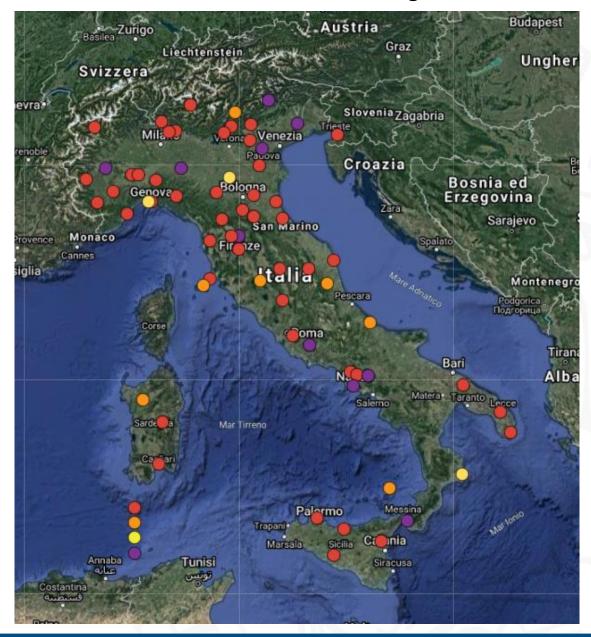
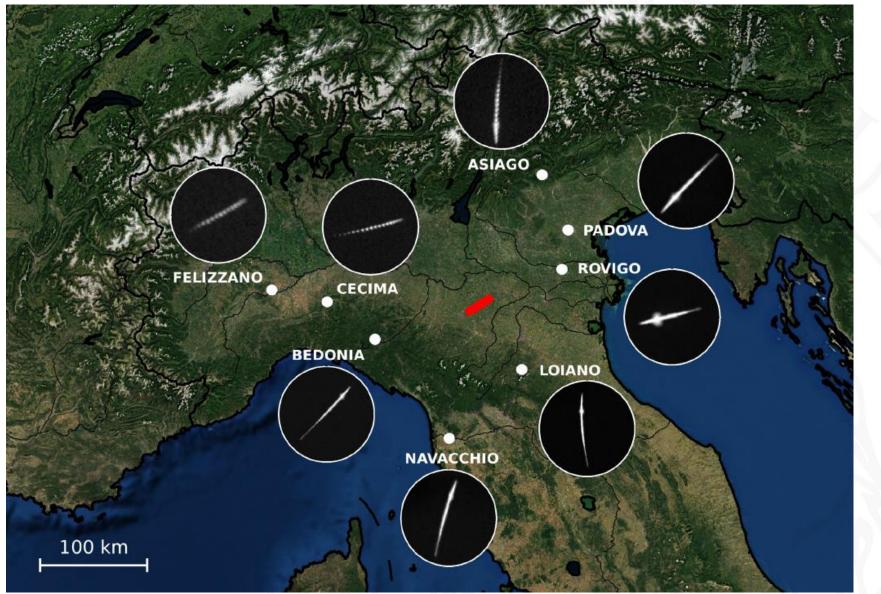


LA METEORITE CAVEZZO: ANALISI E CLASSIFICAZIONE


Giovanni Pratesi^{1,2}

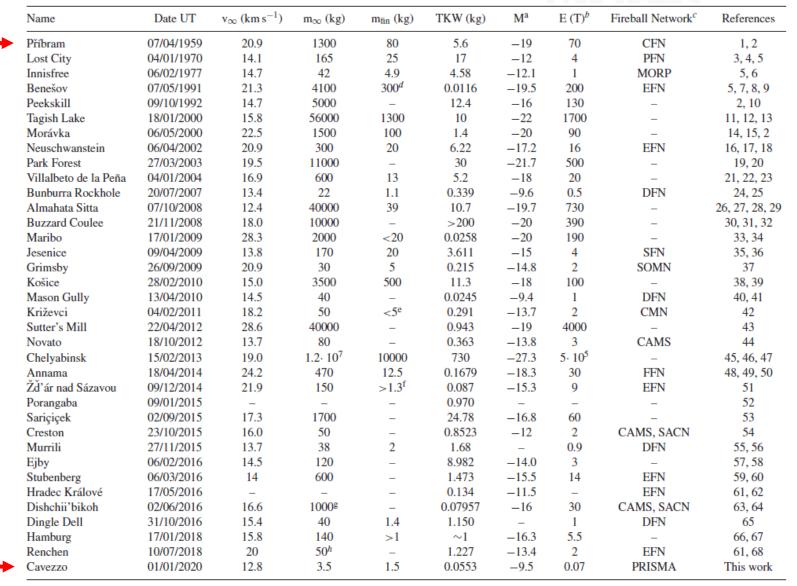
¹PRISMA Project Office ²Dipartimento di Scienze della Terra – Università di Firenze

PRISMA network configuration



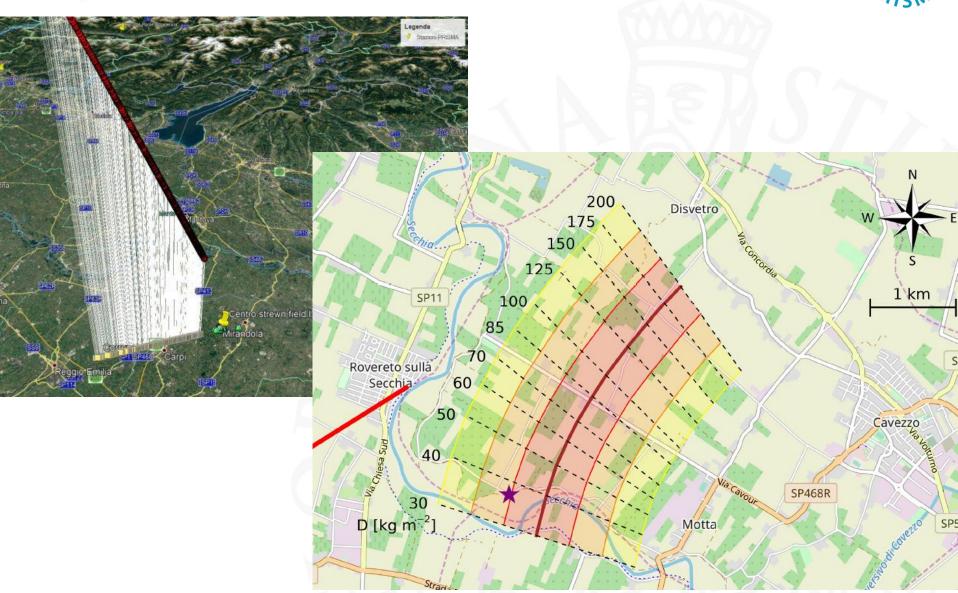
Map of the PRISMA stations (white dots) involved in the detection of the IT20200101 fireball

The IT20200101 fireball



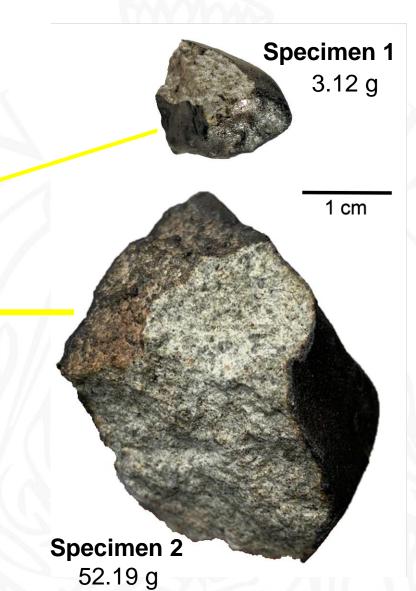
List and relevant data of 'pedigree' meteorites, i.e. for which recovery was accompanied by a sufficient set of sporadic or systematic observations

IT20200101 fireball (Cavezzo meteorite) parameters obtained from triangulation and dynamical model.


		Beginning	Terminal Terminal
Time (UT)	t	18:26:52.9	18:26:58.5
Height (km)	h	75.9 ± 0.2	21.5 ± 0.1
Latitude (N)	$oldsymbol{\phi}$	$44^{\circ}44^{'}03^{''}\pm7^{''}$	$44^{\circ}50'24'' \pm 7$
Longitude (E)	λ	$10^{\circ}43^{'}09^{''}\pm7^{''}$	$10^{\circ}57^{'}25^{''}\pm7$
Velocity (km s ⁻¹)	v	12.2 ± 0.2	4.0 ± 0.2
Mass–section ratio (kg m ⁻²)	D	280 ± 20	210 ± 20
Mass (kg)	m	3.5 ± 0.8	1.5 ± 0.4
Diameter (m)	d	0.13 ± 0.01	0.09 ± 0.01
Luminous path-length (km)	L	59	
Duration (s)	T	5.6	
Trajectory inclination (°)	T_i	68.4 ± 0.3	
Trajectory azimuth (°)	az	238.1 ± 0.2	
Min. absolute magnitude	M	-9.5 ± 0.5 @ 32.6 km	
Pre-atmospheric velocity (km s ⁻¹)	v_{∞}	12.8 ± 0.2	
Ablation coefficient (s ² km ⁻²)	σ	0.012 ± 0.003	
Max. dynamic pressure (MPa)	P_{max}	1.0 ± 0.3 @ $28.2 \mathrm{km}$	
Impact Energy (T TNT)	\boldsymbol{E}	0.07 ± 0.02	

(Gardiol et al. 2021 MNRAS 501, 1215–1227)

Strewn-field for the Cavezzo meteorite fragments



Locations where the two Cavezzo meteorite specimens were found

Monte dei Cappuccini Department of Physics University of Turin, Italy

Cavezzo: a genuine fall

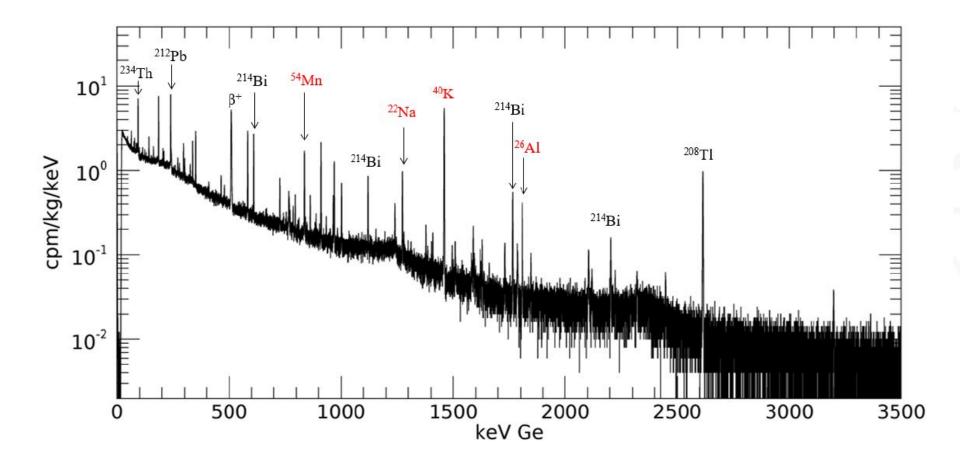
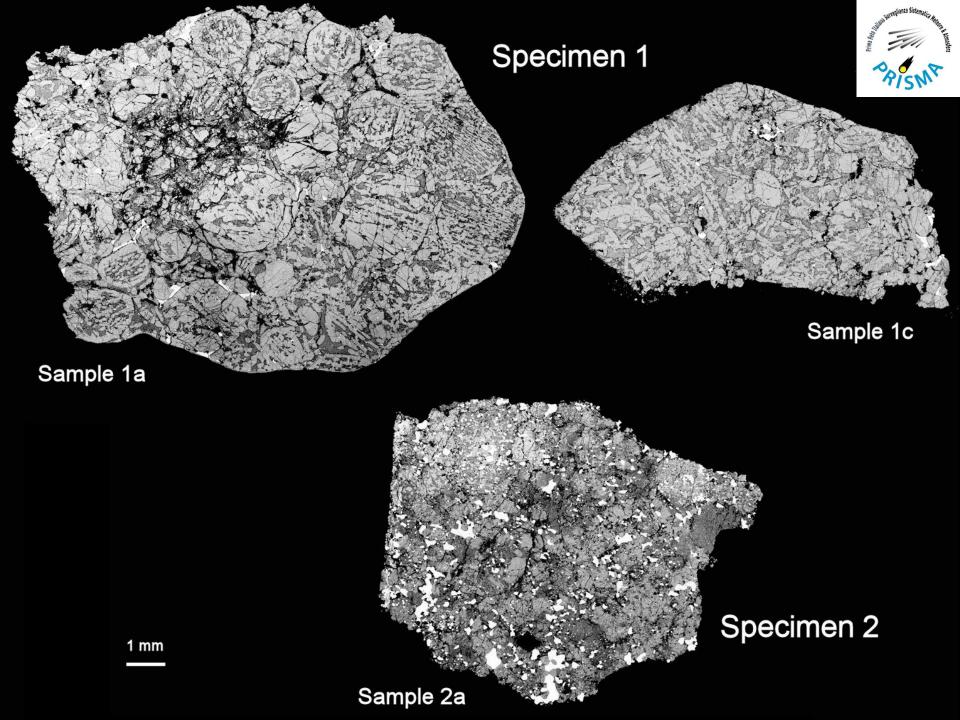


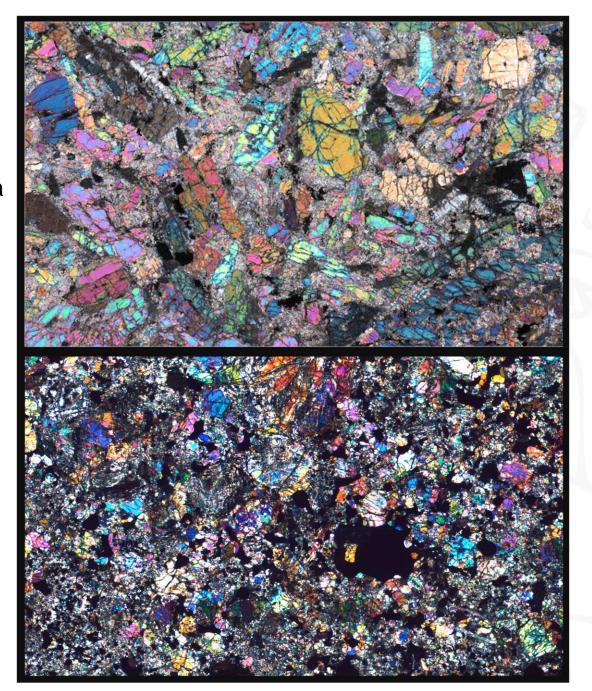
Figure 3: The Cavezzo meteorite gamma-ray spectrum in normal mode (HPGe alone, \sim 45 days counting time). Some peaks are highlighted and associated with the related cosmogenic (red) or natural occurring (black) radionuclide.

Cavezzo: a genuine fall

Nuclide	Decay mode	Half-life	E_{γ} [keV]
⁴⁷ Ca	β-(100%)	4.5 d	1297.09
52Mn	$\epsilon(68.9\%) - \beta^{+}(31.1\%)$	5.6 d	1434.06
40	$\epsilon(50.1\%)$ - $\beta^{+}(49.9\%)$	16.0 d	983.52
			1312.10
⁵¹ Cr	ϵ (100%)	27.7 d	320.08
⁷ Be	$\epsilon(100\%)$	53.2 d	477.60
⁵⁸ Co	$\epsilon(85.1\%) - \beta^{+}(14.9\%)$	70.9 d	810.76
⁵⁶ Co	$\epsilon(80.4\%)$ - $\beta^{+}(19.6\%)$	77.2 d	846.76
			1238.27
46 Sc $\beta^{-}(100\%)$	$\beta^{-}(100\%)$	83.8 d	889.28
			1120.55
⁵⁷ Co	ϵ (100%)	271.8 d	122.06
⁵⁴ Mn	$\epsilon(100\%)$	312.2 d	834.85
²² Na	$\epsilon(9.6\%)$ - $\beta^{+}(90.4\%)$	2.6 y	1274.54
⁶⁰ Co*	$\beta^{-}(100\%)$	5.3 y	1173.23
			1332.49
⁴⁴ Ti*	ϵ (100%)	60 y	1157.02*
²⁶ Al	$\epsilon(18.3\%) - \beta^{-}(81.7\%)$	717 ky	1129.67
		-	1808.65
$^{40}\mathrm{K}$	$\epsilon(10.7\%)$ - $\beta^{-}(89.3\%)$	1250 My	1460.82

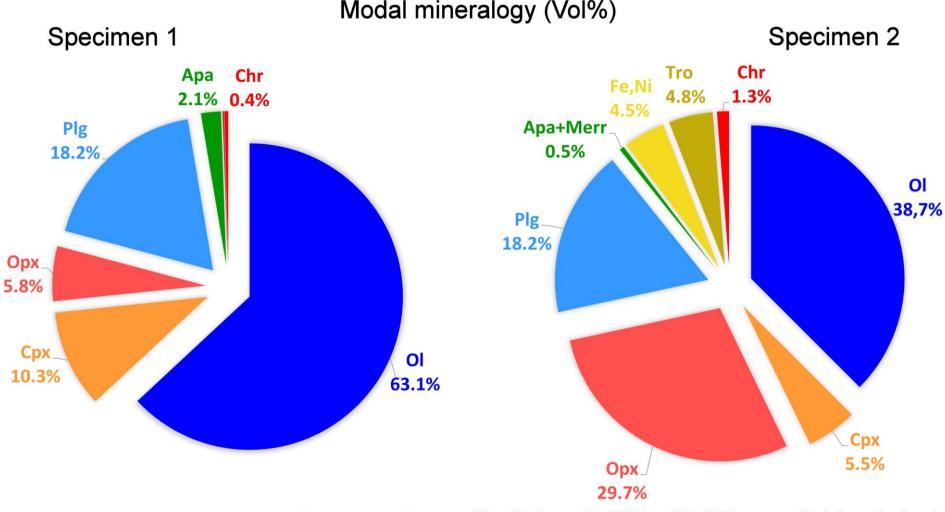


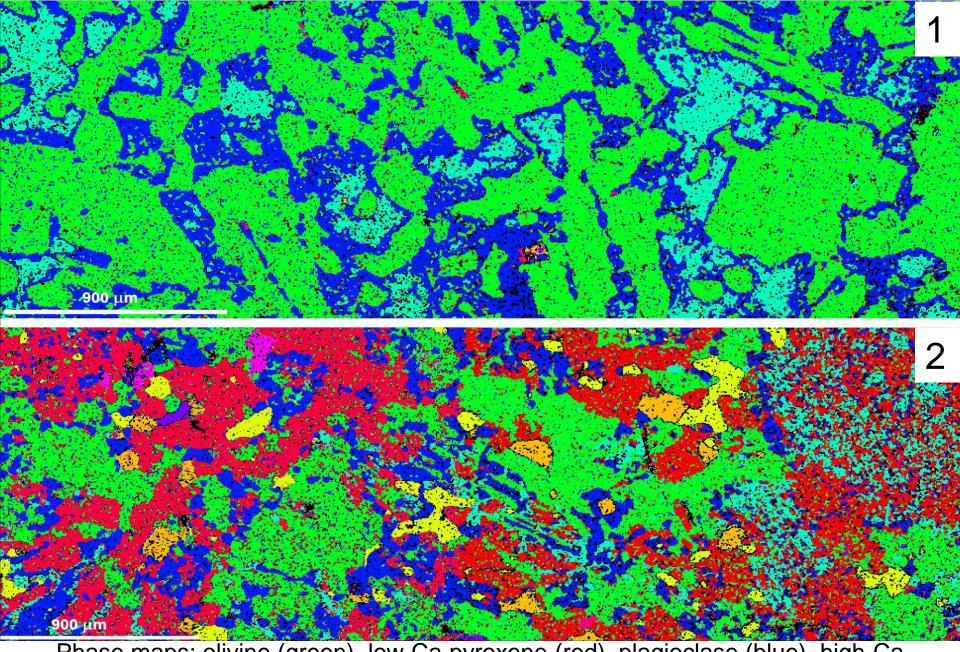
Cavezzo: a genuine fall


Thanks to the high efficiency and selectivity of gamma-ray spectrometer at the Monte dei Cappuccini underground Research Station, we were able to reveal the presence of cosmogenic radionuclides with half-lives down to few days, thus confirming the recent fall of the sample.

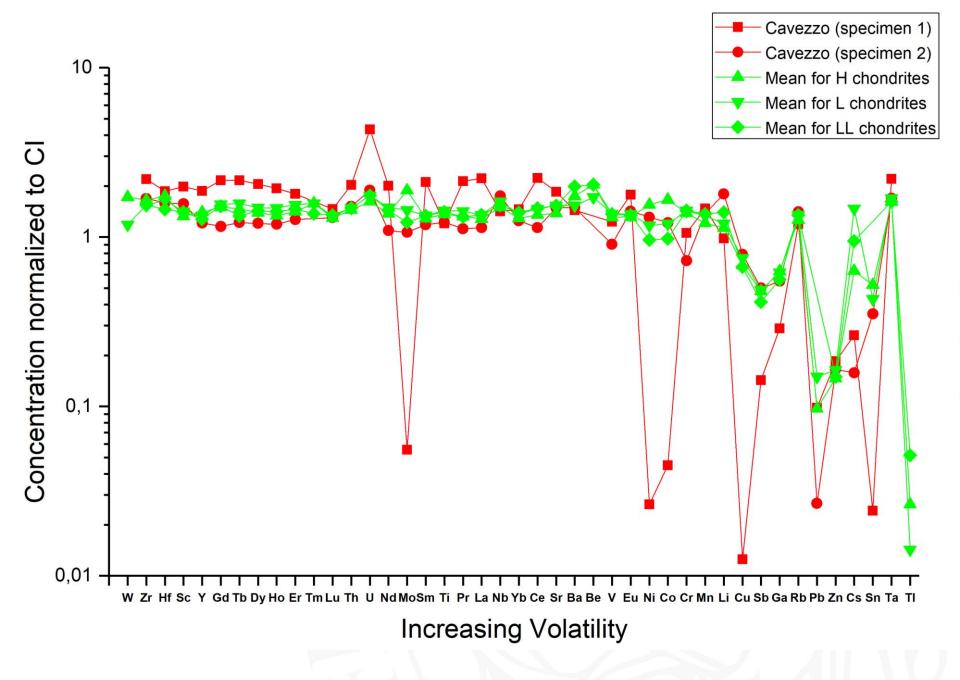
Great care must be taken in attributing a fall since the literature has already recorded conclusive cases of fraud (see the forensic studies for Castenaso and Hocheppan).

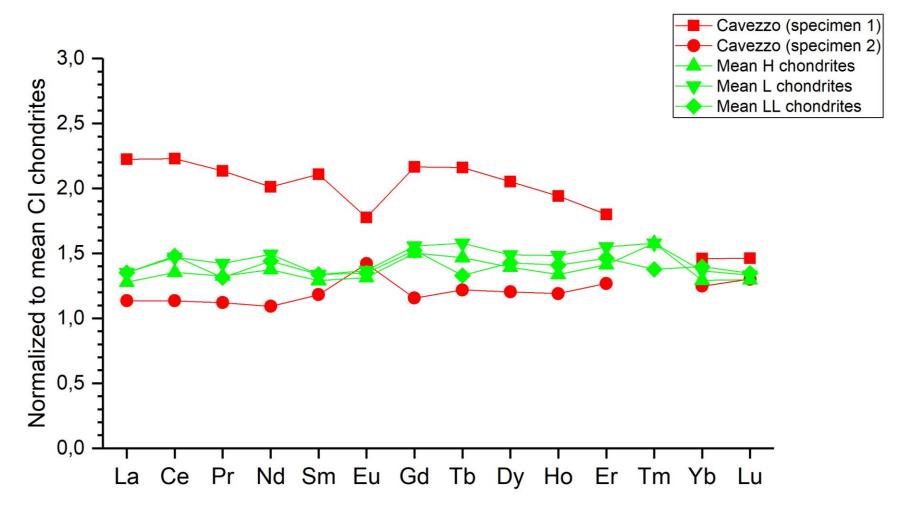
Texture of the achondritic area in specimen 1


Field width 6.3 mm. (Pratesi et al. 2021 MAPS 56, 1125-1150).



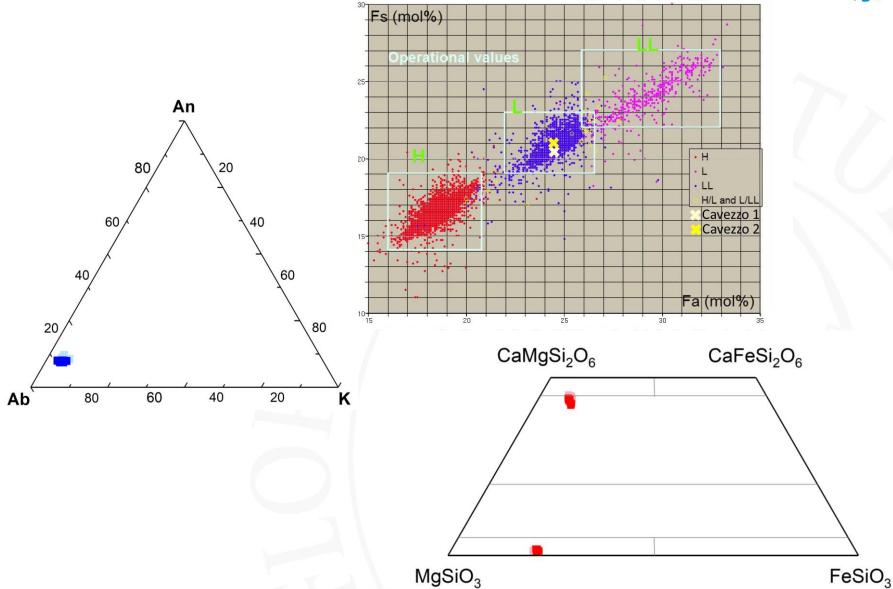
CAVEZZO


Modal mineralogy (Vol%)

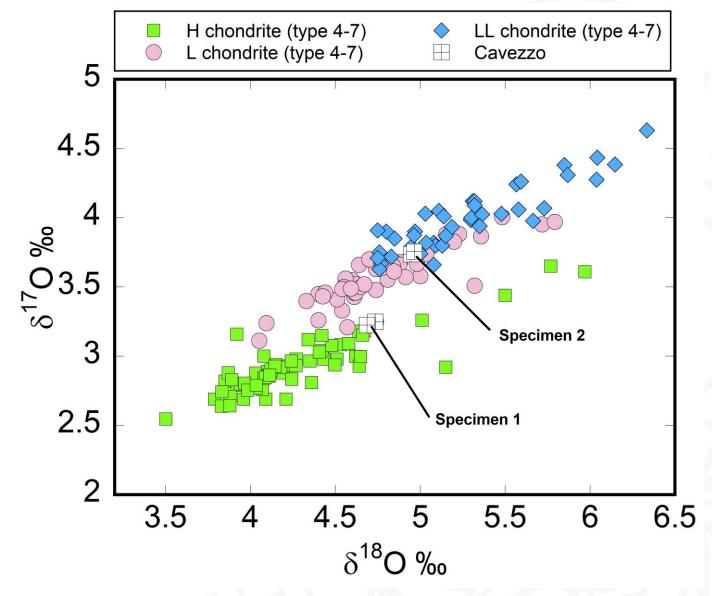

Phase maps: olivine (green), low-Ca pyroxene (red), plagioclase (blue), high-Ca pyroxene (cyan), Ca-phosphates (fuchsia), Fe,Ni metal (orange) and troilite (yellow).

(Pratesi et al. 2021 MAPS 56, 1125-1150)

(Pratesi et al. 2021 MAPS 56, 1125-1150)



Cavezzo: an L5 anomalous chondrite



Oxygen isotopes data from Cavezzo specimens

Museums where the specimens were deposited

Natural History Museum Mineralogical collection University of Firenze (Italy)

Museum of Planetary Sciences Prato (Italy)

Monthly Notices

OYAL ASTRONOMICAL SOCIETY

doi:10.1093/mnras/staa3646

MNRAS **501**, 1215–1227 (2021) Advance Access publication 2020 November 21

doi.10.10/3/11111d3/3tdd50-10

Cavezzo, the first Italian meteorite recovered by the PRISMA fireball network. Orbit, trajectory, and strewn-field

- D. Gardiol , ^{1*} D. Barghini , ^{1,2*} A. Buzzoni, ³ A. Carbognani , ³ M. Di Carlo, ⁴ M. Di Martino, ¹
- C. Knapic,⁵ E. Londero,⁵ G. Pratesi,^{6,7} S. Rasetti,¹ W. Riva,⁸ R. Salerno,⁹ G. M. Stirpe,³
- G. B. Valsecchi, ^{7,10} C. A. Volpicelli, ¹ S. Zorba, ⁵ F. Colas, ¹¹ B. Zanda, ^{11,12} S. Bouley, ^{11,13} S. Jeanne, ¹¹
- A. Malgoyre, ¹⁴ M. Birlan, ¹¹ C. Blanpain, ¹⁴ J. Gattacceca, ¹⁵ J. Lecubin, ¹⁴ C. Marmo, ¹³ J. L. Rault, ^{11,16}
- J. Vaubaillon , 11 P. Vernazza, 7 F. Affaticati, 18 M. Albani, 18 A. Andreis, 19 G. Ascione, 20 T. Avoscan, 21
- P. Bacci, ²² R. Baldini, ²³ A. Balestrero, ⁸ S. Basso, ²⁴ R. Bellitto, ²⁵ M. Belluso, ²⁶ C. Benna, ¹ F. Bernardi, ²⁷
- M. E. Bertaina, L. Betti, R. Bonino, K. Boros, A. Bussi, C. Carli, T. Carriero, E. Cascone, O. Carli, T. Carriero, E. Carli, T. Carriero,
- C. Cattaneo,³¹ A. Cellino [®], ¹ P. Colombetti,^{2,32} E. Colombi,³³ M. Costa,⁸ G. Cremonese,³⁴ D. Cricchio,³⁵
- G. D'Agostino,³⁶ M. D'Elia,³⁷ M. De Maio,³⁸ P. Demaria,¹⁹ A. Di Dato,³⁰ R. Di Luca,³ F. Federici,³⁹
- V. Gagliarducci, ⁴⁰ A. Gerardi, ⁴⁰ G. Giuli, ⁴¹ D. Guidetti, ⁴² G. Interrante, ⁴³ M. Lazzarin, ⁴⁴ S. Lera, ²⁹
- G. Leto ⁶, ²⁶ D. Licchelli, ⁴⁵ F. Lippolis, ⁴⁶ F. Manca, ⁴⁷ S. Mancuso, ¹ F. Mannucci, ⁴⁸ R. Masi, ⁴⁹
- S. Masiero, ³⁵ S. Meucci, ⁴⁹ A. Misiano, ³⁶ V. Moggi Cecchi ⁶⁰, ⁵⁰ E. Molinari, ⁵¹ J. Monari, ⁴²
- M. Montemaggi, ²⁵ M. Montesarchio, ⁵² G. Monti, ⁵³ P. Morini, ⁵⁴ A. Nastasi, ³⁵ E. Pace, ⁵⁵ R. Pardini, ³³
- M. Pavone, ⁵⁶ A. Pegoraro, ⁵⁷ S. Pietronave, ⁵³ T. Pisanu, ⁵¹ N. Pugno, ⁵⁸ U. Repetti, ²¹ M. Rigoni, ³¹
- N. Rizzi, ⁴⁶ C. Romeni, ⁵⁹ M. Romeo, ³⁶ S. Rubinetti, ⁶⁰ P. Russo, ²⁰ F. Salvati, ¹ D. Selvestrel, ³⁴ R. Serra, ⁶¹
- C. Simoncelli, ³⁸ R. Smareglia, ⁵ M. Soldi, ³¹ R. Stanga, ²⁸ F. Strafella, ³⁷ M. Suvieri, ⁶² C. Taricco, ²
- G. Tigani Sava,⁵⁴ M. Tombelli,⁴³ P. Trivero,⁶³ G. Umbriaco,⁴⁴ R. Vairetti,⁶⁴ G. Valente,⁶⁵ P. Volpini,⁴⁹
- R. Zagarella⁶⁶ and A. Zollo⁵²

Meteoritics & Planetary Science 56, Nr 6, 1125–1150 (2021) doi: 10.1111/maps.13695

Cavezzo—The double face of a meteorite: Mineralogy, petrography, and geochemistry of a very unusual chondrite

Giovanni PRATESI (1)^{1,2}*, Vanni MOGGI CECCHI³, Richard C. GREENWOOD⁴, Ian A. FRANCHI⁴, Samantha J. HAMMOND⁴, Mario DI MARTINO⁵, Dario BARGHINI (1)^{5,6}, Carla TARICCO⁶, Albino CARBOGNANI⁷, and Daniele GARDIOL⁵

¹Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, Florence 50121, Italy
 ²INAF—Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, Rome 00133, Italy
 ³Museo di Storia Naturale, Università degli Studi di Firenze, Via G. La Pira 4, Florence 50121, Italy
 ⁴Planetary and Space Sciences, The Open University, Milton Keynes MK7 6AA, UK
 ⁵INAF—Osservatorio Astrofisico di Torino, Via Osservatorio 20, Turin 10025, Italy
 ⁶Dipartimento di Fisica, Università degli Studi di Torino, Via P. Giuria 1, Pino Torinese 10125, Italy
 ⁷INAF—Osservatorio di Astrofisica e Scienza dello Spazio, Via Piero Gobetti 93/3, Bologna 40129, Italy
 *Corresponding author. E-mail: giovanni.pratesi@unifi.it

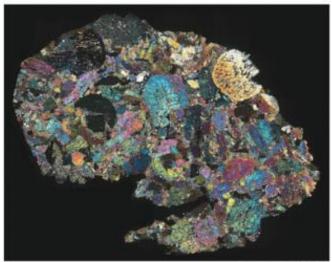
(Received 19 July 2020; revision accepted 07 May 2021)

Cover

Pages: i | First Published: 19 July 2021

METEORITICS & PLANETARY SCIENCE

EDITOR: A. J. Timothy Juli


ASSOCIATE EDITORS

Natalia Attenieva Adrian Boursley Donald Boursley Marc Caffee Edward Clouts Duriel Glavin Cyrera Goodrich Katherine Joy Christian Koeberl Yves Marrocchi Ingo Leya Gerden Oxinski Carlè Pictors Jaffrey Plescia Michoel Poelchau Dina Prialnik Uwe Reimold Kevin Righter Alexander Ruzicka Scott Sandford Gopulan Semivasuri Josep M. Trigo-Rodriguezi Akira Yamagachi Michael Zolendey

Volume 56

Number 6

2021 June

Caveran-a very unasual chondrite.

Asteroids • Cornets • Craters • Interplanetary Dust • Interstellar Medium • Lunar Samples • Meteors • Meteorites • Natural Satellites • Planets • Tektites Origin and History of the Solar System

Cosmogenic radionuclides in the Cavezzo meteorite: gamma-ray measurement and detection efficiency simulations

Ilaria Bizzarri^{a,1,*}, Dario Barghini^{a,b,1}, Paolo Colombetti^a, Daniele Gardiol^b, Sara Rubinetti^{c,d}, Salvatore Mancuso^b, Mario Di Martino^b, Giovanni Pratesi^{e,f}, Vanni Moggi Cecchi^g, Nora Groschopf^h, Andrea Aquinoⁱ, Matthias Laubenstein^j, Narendra Bhandari^k, Carla Taricco^a

^aUniversitá degli Studi di Torino, Via Pietro Giuria 1, Torino, 10125, Italy

^bINAF − Osservatorio Astrofisico di Torino, Via Osservatorio, 20, Pino Torinese (TO), 10025, Italy

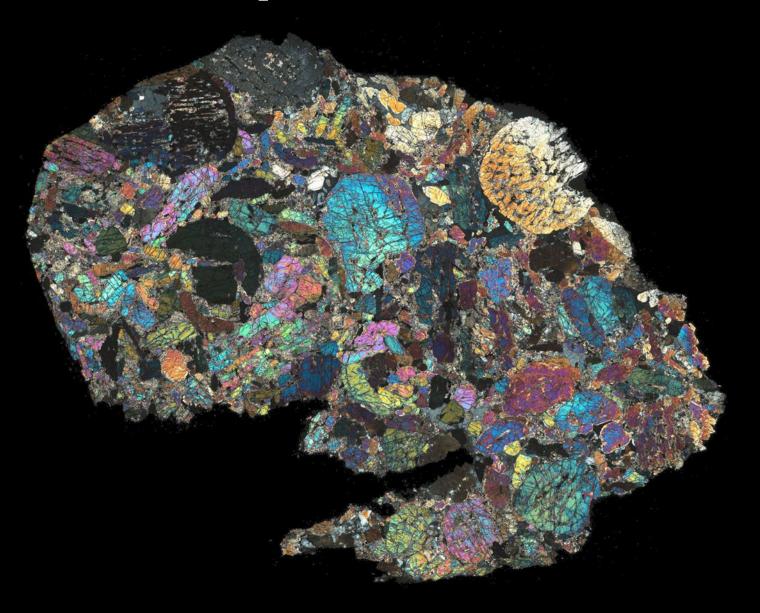
^cAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Handelshafen 43, List/Sylt, 25992, Germany

^dAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bussestraße 24, Bremerhaven, 27570, Germany

^eDipartimento di Scienze della Terra, Università di Firenze, Via Giorgio La Pira, 4, Firenze, 50121, Italy

^fINAF − Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere, 100, Roma, 001.

^gMuseo di Storia Naturale, Università degli Studi di Firenze, Via Romana, 17, Firenze, 50125, Italy


^hDepartment of Geosciences, Johannes Gutenberg University, J.-J.-Becher-Weg 21, Mainz, 55128, Germany

ⁱDipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, Pisa, 56126, Italy

^jIstituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Gran Sasso, Via Giovanni Acitelli, 22, Assergi (AQ), 67100, Italy

^kScience and Spirituality Research Institute, Navrangpura, Ahmedabad, 380009, India

Grazie per l'attenzione

