

JEM-EUSO: Joint Experiment Missions for Extreme Universe Space Observatory

L'esperimento Mini-EUSO come osservatorio per meteore dallo spazio

D. Barghini, M. Battisti, M. Bertaina, A. Cellino, F. Ferraioulo, D. Gardiol, H. Miyamoto, F. Reynaud (Univ. Torino & INAF-OATo) on behalf of the JEM-EUSO Collaboration PRISMA day 25-26 Novembre 2022

JEM-EUSO Program: observation of Extreme Energy Cosmic Rays (E>5x10¹⁹ eV) from space

Mini-EUSO: precursor mission with several scientific

objectives

The meeting will take place at Skobelsyn Institute of Nuclear Physics of Lomonosov Moscow State University

Mini-EUSO & PRISMA a sinergy from the beginning

- PRISMA Day Firenze 2016: M. Bertaina «Mini-EUSO e attivita' correlate all'osservazione di Meteore e Space Debris in associazione con PRISMA»
- PRISMA Day Bologna 2018: F. Bisconti «Osservazioni con l'Engineering model di Mini-EUSO e la camera PRISMA all'INAF-OATo»
- PRISMA Day 2020: M. Bertaina «L'osservazione di meteore con l'esperimento Mini-EUSO a bordo della Stazione Spaziale Internazionale»
- PRISMA Day 2022: M. Bertaina «L'esperimento Mini-EUSO per l'osservazione di meteore dallo spazio»

Mini-EUSO Flight & Engineering Models

P. Barrillon et al.: Exp. Astron. https://doi.org/10.1007/s10686-022-09871-8

Mini-EUSO EM

 2×2 MAPMTs

reflectivity measurement

Focal Surface

Mini-EUSO

 6×6 MAPMTs

FM

EM

Tests at INAF-OATo

Meteors

Fig. 11 Example of a meteor candidate shown in four consecutive D3 frames, each integrated over 40.96 ms. Figure adapted from [27]

F. Bisconti et al.: Exp. Astron. https://doi.org/10.1007/s10686-021-09805-w

Fig. 10 (a) Count rates from stars and Jupiter for the Mini-EUSO *EM* and for the PRISMA camera, with respect to the observed U and V apparent magnitudes, respectively. (b) Some of the stars of the Orion constellation in a D3 frame of the Mini-EUSO *EM* integrated over 40.96 ms and (c) the same stars in a frame of the PRISMA camera integrated over 5 s, where the 32-Ori star is not recognizable. Image (b) has been mirrored to have the same orientation of image (c)

Mini-EUSO on the ISS

Launch 22/08/2019

Mini-EUSO operated ~2/month for ~12h. Data are transferred to ground with ISS crew **once/year**. At the moment 71 sessions, ~1/2 available for analysis. Uv transparent window, Zvezda module, International Space Station

Beyond mission & outreach

Also in Russia a certain success:

@ Tor Vergata with FM Mini-EUSO

Video of Outreach from ISS https://www.youtube.com/watch?v=QincAp4V-SM&t=1s

16 SETTEMBRE 2019

Video ofioutreach on Corriere della sera

https://video.corriere.it/cronaca/mini-euso-luca-parmitanoprotagonista-web-serie-beyond/2582bd90-aa06-11e9-a88cfde1fa123548

Mentioned in the teleconference with Presid. Mattarella https://www.youtube.com/watch?v=NMTTSB6BVaw (min 5:15-6:30)

and Prime Minister Conte:

https://www.youtube.com/watch?v=4GDgpyAsz94 (min 16:51 - 19:15)

https://www.youtube.com/watch?v=lXedBGVHc4o&t=62s

Using the wide-angle UV emission detector, we conducted an #experiment 'UV Atmosphere'. It is aimed to get the atmosphere nocturnal glowing in the close UV wavelength.

This new experiment has its advantages: detector high light ratio and high time resolution (microseconds).

6:21 PM · Jun 29, 2020 · Twitter Web App

MINI-EUSO / UV-Atmosfera

Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory

- Detector: dimensions of 36 x 36 x 62 cm³, two Fresnel lenses (25 cm of diameter)
- The light focuses on 36 multi-anode photomultiplier tubes (MAPMTs)
- Focal surface of 2304 pixels
- Field of view of 44°x 44°
- Spatial resolution on ground ~ 6.3 km/pixel
- Bandwidth: 290 430 nm

- Acquisition logic with 3 times resolutions:
- D1= 2.5 $\mu s,$ D2=320 μs and D3 =41 ms ,
- 1 packet = 128 frames or Gate Time Unit (GTU)
- D1 and D2 are self triggered (4 packets/5.24s), D3 is a continuous video stream.

Instantaneous FoV

Mini-EUSO in orbit

Data transfer and Earth Coverage (up to Nov 2021)

30 "

Data from sessions 4-41

UV maps - Europe and

Diffused sources in Mini-EUSO

Southern Italy

Florida and Haiti/Dominican Republic

TLEs

Direct CR

S. Bacholle et al. ApJS Vol. 253 (2021) 36

lightning

Artificial sources (50-60 Hz oscillations)

Simulated EAS

Artificial sources

Meteors in Mini-EUSO from ISS

Session 06, 27/11/2019, 18:41:11 UTC Andaman sea (near Thailand)

Session 11, 21/02/2020, 21:48:57 UTC Indian Ocean

Session 05, 19/11/2019, 02:21:07 UTC North Atlantic Ocean 12

Trigger Offline

- Search for tracks above threshold on 4 consecutive GTUs (D3)
- Threshold is set at pixel level: $\mu_{pix} + 3\sigma_{noise}$, computed on the last 16 GTU
- An event is eliminated if 64 pixels are activated at the same time on the same EC
- After the trigger, a second selection is operated to exclude too faint or non meteor events
- One event is discarded if the excess $< 5.5\sigma$
- Events are then inspected and classified by eye

Events of sessions S05-14

Extrapolation on detected meteors \rightarrow O(10⁴) in full data sample

				М			M?			U			Ν			тот	
SESSION	[min]	M _{ph}	count	rate	perc.	count	rate	perc.									
20191119_S05	192	60%	100	0,52	25%	58	0,30	14%	49	0,25	12%	194	1,01	48%	401	2,09	100%
20191127_S06	282	0%	327	1,16	39%	186	0,66	22%	77	0,27	9%	240	0,85	29%	830	2 <i>,</i> 95	100%
20191205_S07	214	57%	20	0,09	5%	31	0,14	8%	74	0,35	19%	275	1,28	69%	400	1,87	100%
20191230_S08	232	14%	285	1,23	37%	123	0,53	16%	63	0,27	8%	295	1,27	39%	766	3 <i>,</i> 31	100%
20200108_\$09	236	91%	5	0,02	2%	14	0,06	4%	127	0,54	40%	169	0,72	54%	315	1,34	100%
20200221_S11	168	7%	335	1,99	57%	109	0,65	18%	40	0,24	7%	108	0,64	18%	592	3,52	100%
20200302_S12	210	42%	135	0,64	30%	68	0,32	15%	60	0,29	13%	187	0,89	42%	450	2,15	100%
20200313_S13	208	85%	122	0,59	26%	33	0,16	7%	27	0,13	6%	283	1,36	61%	465	2,24	100%
20200331_S14	221	36%	173	0,78	35%	78	0,35	16%	83	0,38	17%	165	0,75	33%	499	2,26	100%
TOTAL	1962		1502	0,77	32%	700	0,36	15%	600	0,31	13%	1916	0,98	41%	4718	2,41	100%

Mini-EUSO efficiency

Observed event rate: 2.0 – 2.5 / min (in optimal conditions)

Predicted event rate at +5^m (U) : 2.4 / min

Abs.	U-band flux (erg/s/cm ² /A)	mass (g)	event	
indg	((19,3) (11,71)	(8)	(Mini)	
+7	$6.7 \cdot 10^{-12}$	$2 \cdot 10^{-3}$	0.4/s	30
0 -5	4.2·10 ⁻⁹ 4.2·10 ⁻⁷	1 1 100	0.11/orbit 2.5/year	25

Abdellaoui et al., Planet. Space Sci. 143, 245 (2017)

Zero-point flux in UV:

Energy flux U-band: f_{λ} = 4.75·10⁻⁸ erg cm⁻² s⁻¹ nm⁻¹ Mini-EUSO bandwidth: [250, 470] nm: $\Delta\lambda$ = 220 nm Collection area: A = 490.6 cm2 Photon energy @ λ = 365 nm: E_{γ} = 5.45 ·10⁻¹² erg D1 GTU δt_{D1} = 2.5 µs , integral mean efficiency η= 8%

20

[2.8, 3.3]

Maps:

- Most of the meteors are detected where the background is lower
- The false positives rate is higher over continents

Simulations

- Events are simulated in Mini-EUSO FoV to deduce detection efficiency and exposure as a function of magnitude *M* and background *b*
- Random generation of meteor parameters.
 Input = (amag, bkg)
 - Speed (v_{∞}), Inclination (γ), Density (ρ)...
 - Height, speed and azimuth of ISS movement
- 2. Solve the dynamic model of meteors: v = v(h), M = M(h), h = h(t)
- 3. Add background map
- 4. Trigger + post processing

Meteor dynamic model

Gritsevich (2009), *Adv. Space Res.*, 44, 323 Gritsevich & Koschny (2011), *Icarus*, 212, 877

$$\begin{cases} \alpha = \frac{1}{2}c_d \ \frac{\rho_0 H_0 S_e}{\sin \gamma M_e} \\ \beta = (1-\mu) \frac{c_h V_e^2}{2c_d H^*} = \frac{1-\mu}{2} \sigma V_e^2 \\ \end{cases}$$
 MASS-LOSS PARAMETER

Adimensional quantities:

ATMOSPHERIC PARAMETERS

 c_d = drag coefficient ρ_0 = atmospheric pressure at sea level H_0 = atmospheric scale height

METEOROIDS PARAMETERS

 M_e = pre-atmospheric mass S_e = pre-atmospheric cross-section ρ_e = bulk density V_e = pre-atmospheric speed γ = trajectory inclination w.r.t. ground

ABLATION PARAMETERS

 σ = ablation coefficient μ = shape-change coefficient τ = luminous efficiency

Simulated meteors on real background

Trigger — number of detected events

Computation of Efficiency and Exposure

Background implementation

Option 1: Meteors simulated on Real Background

- Select real data of Mini-EUSO
- Add simulated meteors, varying magnitude *M*
- Trigger
- Get exposure

Limit! Require large computation time for

• 70 sessions with 5-8 orbits each

Option 2: Meteors simulated on Simulated Background

- Produce a constant simulated background, varying background level *b*
- Add simulated meteors, varying magnitude M
- Trigger
- Get a dependence for the efficiency $\eta(b, M)$
- Apply $\eta(b, M)$ to Mini-EUSO data, where b is calculated as average on 1 pixel

Trigger efficiency (Simulated background)

le2

Background counts on D3 data (normalized to D1) Typically in the range [0.5 – 20] cnts/GTU

Simulations over flat poissonian background maps

triggerSD: first trigger searching tracks in 4 consecutive GTUs **checkGtu**: post-processing to tentatively exclude false triggers

- trigger efficiency >80% for mag < +2</p>
- decay above +2^m very depending on the background value
- checkGtu discards ~10% of triggers even for very bright events

Efficiency (1 session used)

• Data used in analysis, 30/12/2019 – 31/12/2019

- Every orbit \cong 15 files
- $File = 3200 \ GTU = 131,07 \ s$
- Orbit $\cong 2000 s$

•
$$\eta(M) = \frac{n_{triggered events}}{n_{total events}}$$

Cumulative flux density

PRELIMINARY

• On real background

• On simulated background

Exposure and flux density

PRELIMINARY

• Distribution of real events as a function of magnitude

Cumulative Flux Density

PRELIMINARY

• Magnitude – Mass Conversion

Magnitude	Mass (kg)
+7	$2 \cdot 10^{-6}$
+5	10 ⁻⁵
0	10 ⁻³
-5	10 ⁻¹

Abdellaoui et al., 2017, Meteor studies in the framework of the JEM-EUSO program, Planetary and Space Science

- Data used to get the trend = 150
- Data used for comparison $\cong 20000$
- The trend follows expected behaviour

Koschny and Drolshagen, 2016, Flux densities of meteoroids derived from optical double-station observations, Planetary and Space Science

Correlation with ground sources (130 ev. with d < 400 km from a ground station around the world)

Red dots: ground networks Yellow diamonds: ISS position at M event Green diamonds: position of M event

- **2** M in FoV of Palermo PRISMA camera: NO counterpart
- 3 M in FoV FRIPON network: still to be checked 26

Conclusions:

- Mini-EUSO is on ISS and takes data twice per month.
- Mini-EUSO detects events of different nature according to expectations.
- Thousands of meteor events being analysed.
- Preliminary estimation of sensitivity to meteors in agreement with simulations as well as meteor flux.
- Detailed data analysis in process.
- We look forward to have events detected in correlation with PRISMA, we got close but not lucky yet.

THANK YOU