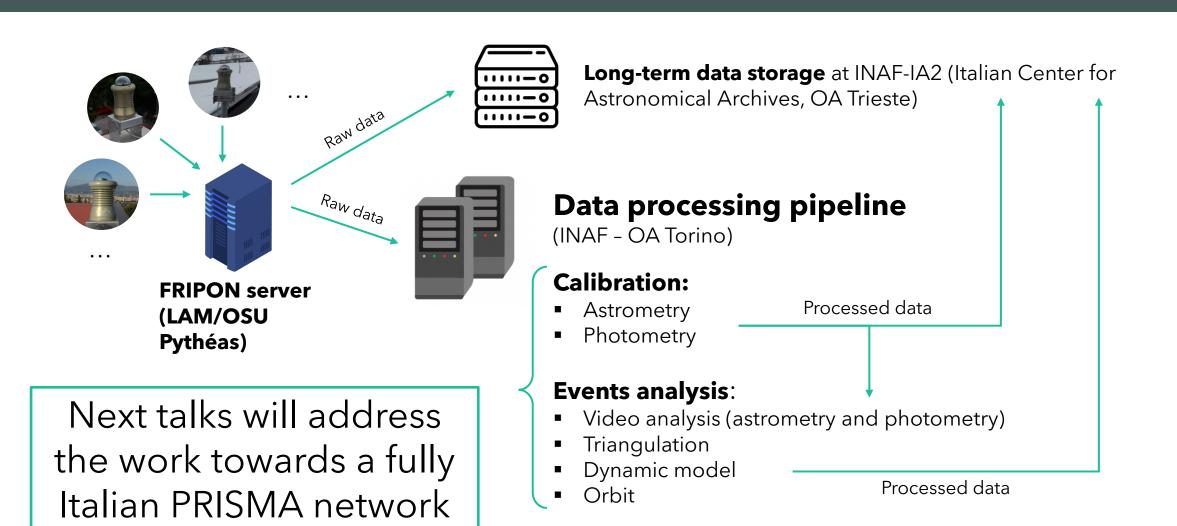

# Data and metadata of the PRISMA database

D. Barghini and the PRISMA team

PRISMA Days, 25-26 Novembre 2022 Dipartimento di Fisica, UniTO



#### The PRISMA station




- All-sky camera operated at 30 Hz to capture meteors with a suitable sampling rate
- Meteor acquisition triggered by a dedicated software named FreeTure (https://github.com/cmarmo/freeture)
- A central server combine detections of the same meteor in events
- Every 10 minute the camera performs a 5 s exposure (capture) for calibration purposes

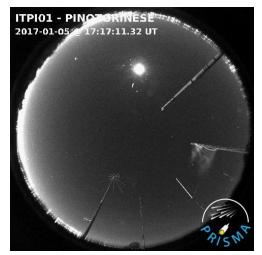
#### **PRISMA** dataset:

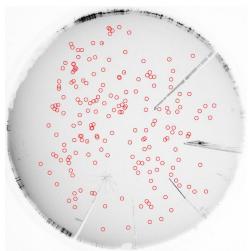
- Captures:  $\sim$ 140 / day (x 60 cameras, x 5 years)
- Events: ~2000 since 2016 (multiple events from ≥ 2 cameras)

#### The PRISMA dataflow



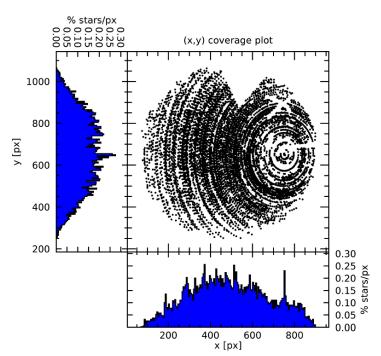
#### Astrometry and photometry

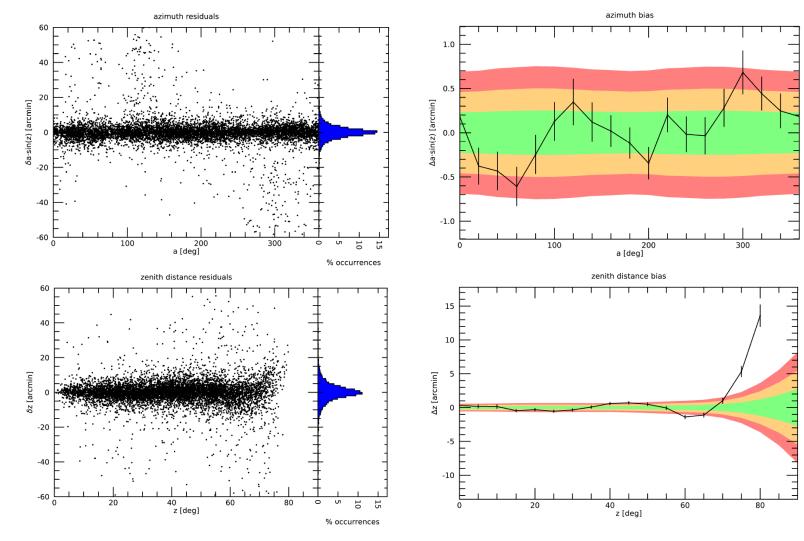

- The data-set of captures are used for the astrometric and photometric calibration
- On each capture, 100 300 stars can be identified
- Automatic procedure scans for positive sources on each image and correlates them with catalogue sources through a simplified projection
- Complete astrometric solution is computed on a daily and monthly basis:
  - High radial distortion


Optical axis 
$$\neq$$
 zenith direction   
Elliptic projection 
$$\begin{cases} b = a_0 - E + \operatorname{atan}\left(\frac{y - y_0}{x - x_0}\right) \\ u = Vr + S(e^{Dr} - 1) \end{cases} \begin{cases} a = E + \operatorname{atan}\left(\frac{\sin b \sin u}{\cos b \sin u \cos \epsilon + \cos u \sin \epsilon}\right) \\ z = \operatorname{acos}\left(\cos u \cos \epsilon - \cos b \sin u \sin \epsilon\right) \end{cases}$$

$$(x,y) \rightarrow (b,u) \rightarrow (a,z) \rightarrow (\alpha,\delta)$$
 as a function of time for the meteor observation

For more details about the astrometric calibration of PRISMA cameras:

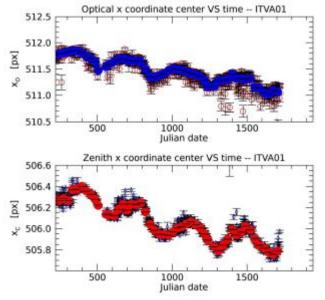

Barghini D. et al., "Astrometric calibration for all-sky cameras revisited", Astron. Astrophys., 2019, 626, A105

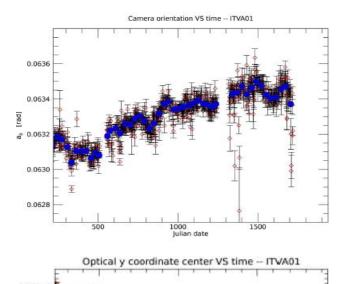


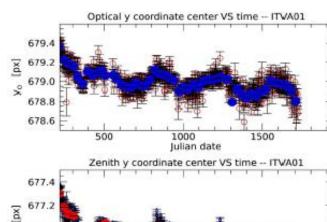


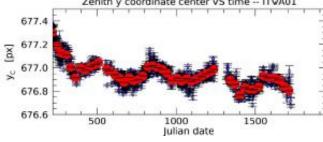

#### Astrometry results (1)

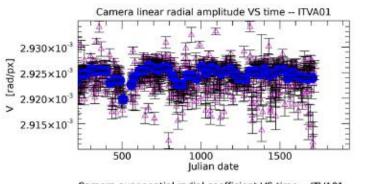
Example:
ITPI01 - Pino Torinese
02/12/2018
~8k stars identified

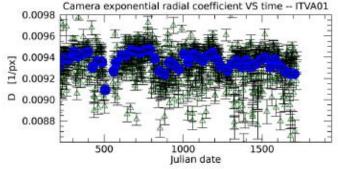


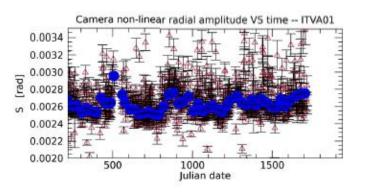





### Astrometry results (2)


Example: ITVA01 - Lignan 2017 - 2021 data


#### **Trend +** seasonal variation

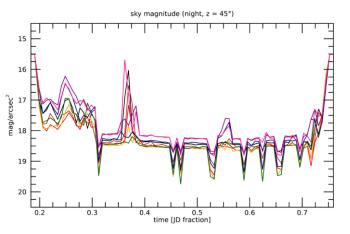


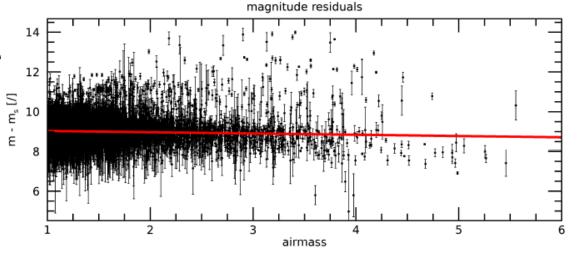



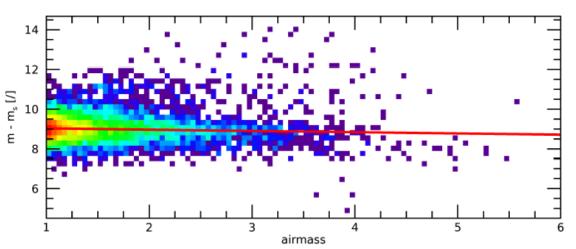


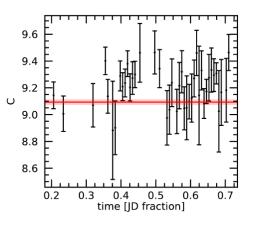


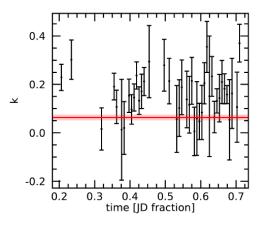


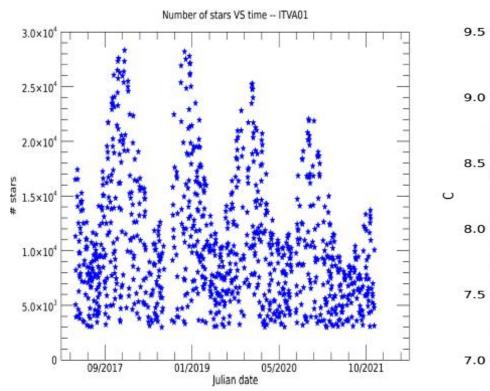


### Photometry results (1)

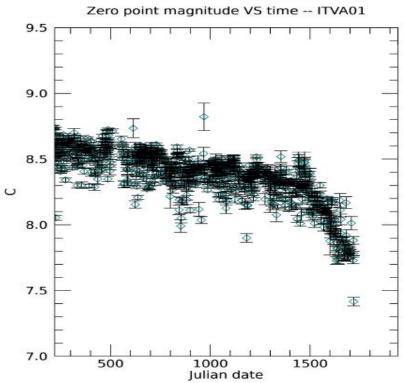

Example:
ITPI01 - Pino Torinese
02/12/2018
~8k stars identified

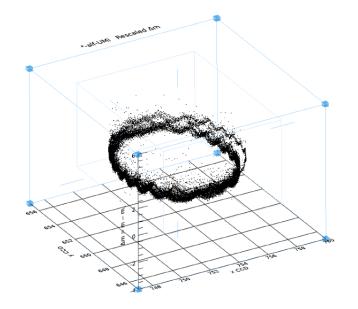

# Not a photometric night!








## Photometry results (2)

Example: ITVA01 - Lignan 2017 - 2021 data Degradation of the performance (most probably related to dome transparency)







+ sub-pixel effects...

### Output data from calibration pipeline

| TTPI01_201812_astro_covar.txt      | 17/11/2022 15:20 | File TXT    | 3 KB     |
|------------------------------------|------------------|-------------|----------|
| TTP101_201812_astro_error.txt      | 17/11/2022 15:20 | File TXT    | 5 KB     |
| ITPI01_201812_astro_param.txt      | 17/11/2022 15:20 | File TXT    | 2 KB     |
| ITPI01_201812_astro_report.pdf     | 17/11/2022 15:20 | Documento A | 3.976 KB |
| TPI01_201812_astro_sigma.txt       | 17/11/2022 15:20 | File TXT    | 2 KB     |
| TPI01_201812_astro_solution.txt    | 17/11/2022 15:20 | File TXT    | 1 KB     |
| TPI01_201812_photo_param.txt       | 17/11/2022 15:19 | File TXT    | 2 KB     |
| TTP101_201812_photo_sigma.txt      | 17/11/2022 15:19 | File TXT    | 2 KB     |
| ITPI01_20181202_assoc.txt          | 17/11/2022 15:19 | File TXT    | 1.505 KB |
| ITPI01_20181202_astro_covar.txt    | 17/11/2022 15:20 | File TXT    | 3 KB     |
| ITPI01_20181202_astro_error.txt    | 17/11/2022 15:20 | File TXT    | 5 KB     |
| ITPI01_20181202_astro_param.txt    | 17/11/2022 15:19 | File TXT    | 10 KB    |
| ♣ ITPI01_20181202_astro_report.pdf | 17/11/2022 15:20 | Documento A | 4.011 KB |
| ITPI01_20181202_astro_sigma.txt    | 17/11/2022 15:19 | File TXT    | 10 KB    |
| TPI01_20181202_astro_solution.txt  | 17/11/2022 15:20 | File TXT    | 1 KB     |
| ITPI01_20181202_photo_param.txt    | 17/11/2022 15:19 | File TXT    | 57 KB    |
| lTPI01_20181202_photo_report.pdf   | 17/11/2022 15:20 | Documento A | 2.635 KB |
| ITPI01_20181202_photo_sigma.txt    | 17/11/2022 15:19 | File TXT    | 57 KB    |
| TPI01_20181202_photo_solution.txt  | 17/11/2022 15:19 | File TXT    | 1 KB     |
|                                    |                  |             |          |

# onthiy result mes

aily result files

- All results from the pipeline are usually output to ASCII files (TXT) and PDF reports (printable format)
- In the database, they will be organized in daily and monthly tar archives

Most important ones (for calibration):

- \_assoc.txt: list of recognized stars used for astro/photometry
- \_astro/photo\_report.pdf: summary of the calibration process
- \_astro/photo\_solution.txt: astrometry and photometry solution parameters

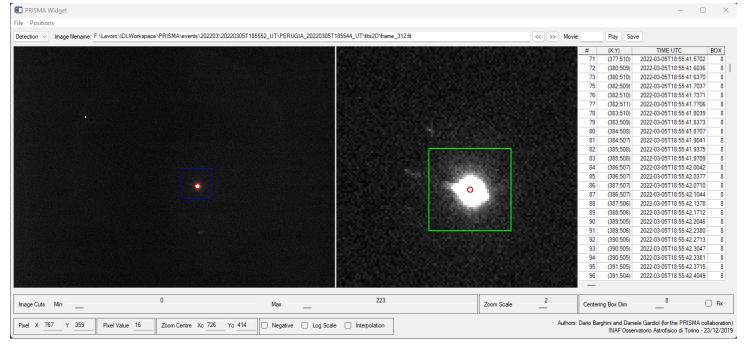
## Example of ASCII table

ITPI01\_20181202
config = ITPI01\_20171010.ini
model = proj\_asin1

| image<br>[/]                                               | julian_date<br>[/] | X<br>[vq] | s_x<br>[px] | Y<br>[xq] | s_y<br>[px] | mags<br>[/] | s_mags<br>[/] | eff<br>[/] | sat<br>[/] | star_id<br>[/] | az<br>[rad] | zd<br>[rad] |
|------------------------------------------------------------|--------------------|-----------|-------------|-----------|-------------|-------------|---------------|------------|------------|----------------|-------------|-------------|
|                                                            |                    | [xq]      | [bx]        | [bx]      | [bx]        |             |               |            |            |                | [[ad]       | [[au]       |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 484.908   | 0.300       | 682.051   | 0.300       | -5.016      | 0.365         | 0.997      | 0.         | *-6-Lac        | 2.060380    | 0.064144    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 517.996   | 0.300       | 747.285   | 0.300       | -5.122      | 0.379         | 0.966      | 0.         | *-lam-And      | 1.335697    | 0.259072    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 573.932   | 0.300       | 886.510   | 0.300       | -6.350      | 0.148         | 0.849      | 0.         | *-gam01-And    | 1.262628    | 0.715616    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 611.090   | 0.300       | 942.696   | 0.300       | -5.925      | 0.225         | 0.793      | 0.         | *-rho-Per      | 1.205454    | 0.923037    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 492.717   | 0.300       | 590.782   | 0.300       | -5.414      | 0.304         | 0.975      | 0.         | *-ksi-Cyq      | 4.732041    | 0.211491    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 528.354   | 0.300       | 678.764   | 0.300       | -4.345      | 0.704         | 0.992      | 0.         | *-alf-Lac      | 0.499677    | 0.107949    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 622.427   | 0.300       | 932.832   | 0.300       | -6.440      | 0.150         | 0.795      | 0.         | *-bet-Per      | 1.159197    | 0.912409    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 482.476   | 0.300       | 540.764   | 0.300       | -6.197      | 0.156         | 0.942      | 0.         | *-gam-Cyg      | 4.654042    | 0.362190    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 506.026   | 0.300       | 568.128   | 0.300       | -7.468      | 0.052         | 0.961      | 0.         | *-alf-Cvq      | 4.873919    | 0.280143    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 584.198   | 0.300       | 738.680   | 0.300       | -4.618      | 0.589         | 0.945      | 0.         | *-rho-Cas      | 0.735788    | 0.350210    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 596.117   | 0.300       | 773.994   | 0.300       | -6.625      | 0.095         | 0.921      | 0.         | *-alf-Cas      | 0.869601    | 0.448109    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 605.897   | 0.300       | 776.275   | 0.300       | -5.290      | 0.354         | 0.914      | 0.         | *-eta-Cas      | 0.829150    | 0.472351    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 573.301   | 0.300       | 657.369   | 0.300       | -5.370      | 0.285         | 0.971      | 0.         | *-zet-Cep      | 6.263410    | 0.231391    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 574.909   | 0.300       | 672.710   | 0.300       | -4.675      | 0.553         | 0.970      | 0.         | *-del-Cep      | 0.158145    | 0.239136    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 599.001   | 0.300       | 744.958   | 0.300       | -6.546      | 0.105         | 0.934      | 0.         | *-bet-Cas      | 0.707335    | 0.393454    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 623.775   | 0.300       | 770.090   | 0.300       | -6.642      | 0.115         | 0.907      | 0.         | *-gam-Cas      | 0.731614    | 0.500193    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 576.494   | 0.300       | 636.940   | 0.300       | -6.017      | 0.163         | 0.967      | 0.         | *-muCep        | 6.016405    | 0.253574    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 633.984   | 0.300       | 788.264   | 0.300       | -5.915      | 0.180         | 0.891      | 0.         | *-del-Cas      | 0.770271    | 0.560190    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 666.490   | 0.300       | 867.003   | 0.300       | -5.839      | 0.263         | 0.824      | 0.         | *-gam-Per      | 0.904302    | 0.807907    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 669.774   | 0.300       | 893.125   | 0.300       | -6.918      | 0.100         | 0.804      | 0.         | *-alf-Per      | 0.954191    | 0.881627    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 678.627   | 0.300       | 910.074   | 0.300       | -5.626      | 0.347         | 0.786      | 0.         | *-del-Per      | 0.962561    | 0.945762    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 523.226   | 0.300       | 513.654   | 0.300       | -5.116      | 0.468         | 0.920      | 0.         | *-del-Cyq      | 4.950237    | 0.451410    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 621.407   | 0.300       | 679.376   | 0.300       | -4.748      | 0.592         | 0.937      | 0.         | *-iot-Cep      | 0.173995    | 0.381004    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 601.124   | 0.300       | 620.771   | 0.300       | -6.024      | 0.169         | 0.948      | 0.         | *-alf-Cep      | 5.949632    | 0.336408    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 599.640   | 0.300       | 597.446   | 0.300       | -5.323      | 0.358         | 0.940      | 0.         | *-eta-Cep      | 5.772705    | 0.368527    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 646.197   | 0.300       | 633.775   | 0.300       | -5.618      | 0.294         | 0.918      | 0.         | *-bet-Cep      | 6.137469    | 0.456919    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 691.115   | 0.300       | 682.162   | 0.300       | -5.924      | 0.191         | 0.883      | 0.         | *-gam-Cep      | 0.141412    | 0.589886    |
| ITPI01 20181202T165629 UT-0                                | 2458455.20589579   | 764.442   | 0.300       | 925.508   | 0.300       | -8.293      | 0.032         | 0.719      | 0.         | *-alf-Aur      | 0.802084    | 1.188287    |
| ITPI01_201012021103023_01 0                                | 2458455.20589579   | 654.839   | 0.300       | 559.739   | 0.300       | -5.401      | 0.362         | 0.889      | 0.         | *-del-Dra      | 5.757663    | 0.566893    |
| ITPI01_201012021103023_01 0                                | 2458455.20589579   | 692.577   | 0.300       | 562.733   | 0.300       | -5.376      | 0.427         | 0.863      | 0.         | *-chi-Dra      | 5.862960    | 0.666011    |
| ITPI01_201012021103023_01 0<br>ITPI01 20181202T165629 UT-0 | 2458455.20589579   | 752.149   | 0.300       | 655.557   | 0.300       | -6.563      | 0.133         | 0.832      | 0.         | *-alf-UMi      | 0.015362    | 0.780726    |

#### Metadata description

- Important parameters (e.g., number of identified stars, latitude, longitude...) are saved as metadata that will be imported on database
- They are saved as FITS header


#### SIMPLE = T / Written by IDL: Thu Nov 17 15:17:38 2022 16 / number of bits per data pixel BITPIX = NAXIS 0 / number of data axes T / FITS dataset may contain extensions EXTEND = IF DATA = 1 / 1 if there are data, 0 otherwise 136 / number of captures = 'PINOTORINESE' / PRISMA camera name DATE = '2018-12-04' / acquisition night 2458457 / julian date LAT 45.041230 / station latitude [deg] 7.764930 / station longitude [deg] 615.0 / station elevation [m] 1 / 1 if astrometric calibrated, 0 otherwise IF ASTR = IF PHOT = 1 / 1 if photometric calibrated, 0 otherwise NSTARS = 11584 / number of identified stars MOON PH = 0.059 / moon phase MOON ZD = 3.380 / max moon zd [deg] 0.1675 / linear pixel scale [deg/px] SCALE = 9.724 / mean sky mag at zd = 0° [mag/as^2] 1AGZ S MAGZ = 0.162 / err on mean sky mag at zd = 0° [mag/as^2] 9.262 / mean sky mag at zd = 45° [mag/as^2] 1AGM 0.214 / err on mean sky mag at zd = 45° [mag/as^2] s magm = 8.775 / mean sky mag at zd = 70° [mag/as^2] MAGL 0.464 / mean sky mag at zd = 70° [mag/as^2] photometric model 9.113 / zero-point magnitude [mag]

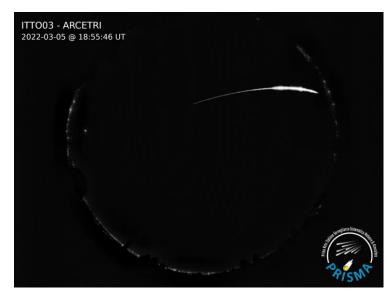
#### PRISMA\_ITPI01\_2018-12-04\_calibration.fits

```
0.017 / err on zero-point magnitude [mag]
                 0.042 / atm extinction coeff [mag/am]
                 0.010 / err on atm extinction coeff [mag/am]
  'proj rotz exp1 asym' / astrometric model
             0.0394656 / dir of the north [rad]
           2.77897E-05 / err on dir of the north [rad]
               483.772 / x of the opt center [px]
             0.0437275 / err on x of the opt center [px]
               660.416 / y of the opt center [px]
             0.0369387 / err on y of the opt center [px]
               494.785 / x of the zenith dir [px]
             0.0129780 / err on x of the zenith dir [px]
               662.492 / y of the zenith dir [px]
             0.0126970 / err on y of the zenith dir [px]
           0.00291309 / linear plate scale [rad/px]
           8.07752E-07 / err on linear plate scale [rad/px]
           0.00268649 / exponential scale [rad]
          5.56005E-05 / err on exponential scale [rad]
           0.00921680 / exponential radial factor [1/px]
           4.43313E-05 / err on exponential radial factor [1/px]
          0.000409793 / amplitude of opt plate misalign [rad]
           5.39453E-05 / err on amplitude of opt plate misalign [rad]
               2.47119 / phase of opt plate misalign [rad]
              0.129302 / err on phase of opt plate misalign [rad]
= 'PRISMA ITPI01 2018-12-04 calibration.png' / preview filename
```

#### Detection analysis

- Analysis of the video data from each station (detection) of the event
- Determination of position (x,y) and flux of the meteor as a function of the time through barycentre / aperture photometry and PSF fitting
- Estimation of PSF saturation (important for meteorite-droppers!)
- Astro/photometric solution to get celestial coordinates and apparent magnitude
- Production of the detection image and video




#### Detection results

Example: 20220305T185552\_UT

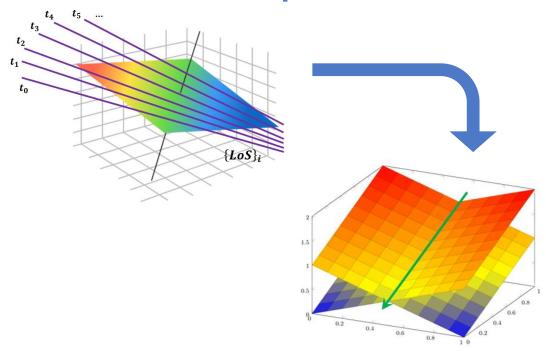
10 cameras



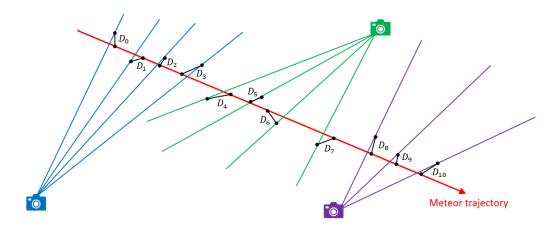






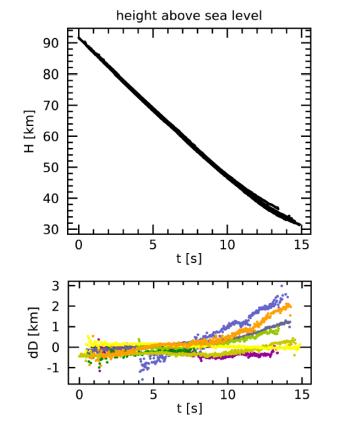


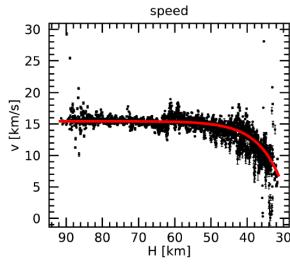


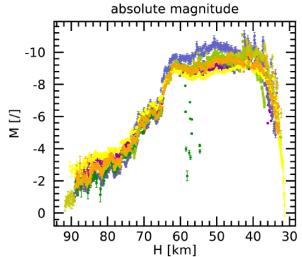


## Triangulation

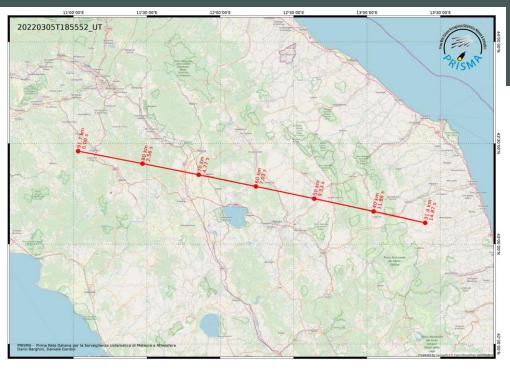
Two main approach to reconstruct the 3D meteor path in the atmosphere, both assuming a **straight-line trajectory** 

#### Plane intersection between couples of cameras (Ceplecha, 1987)

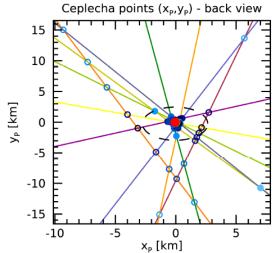




#### Minimizing distances of lines of sight between N cameras (Borovicka, 1990)





#### Triangulation results

# Example: 20220305T185552\_UT 10 cameras














### Dynamic model

The output from triangulation (t, h, v, M) is the input for the evaluation of the dynamical model

$$\begin{cases} \frac{dh}{dt} = -v \sin \gamma \\ M \frac{dv}{dt} = -\Gamma S \rho v^2 \\ \frac{dM}{dt} = -\frac{\Lambda}{2Q} S \rho v^3 \\ I = -\tau \frac{d}{dt} \left( \frac{1}{2} M v^2 \right) \end{cases}$$

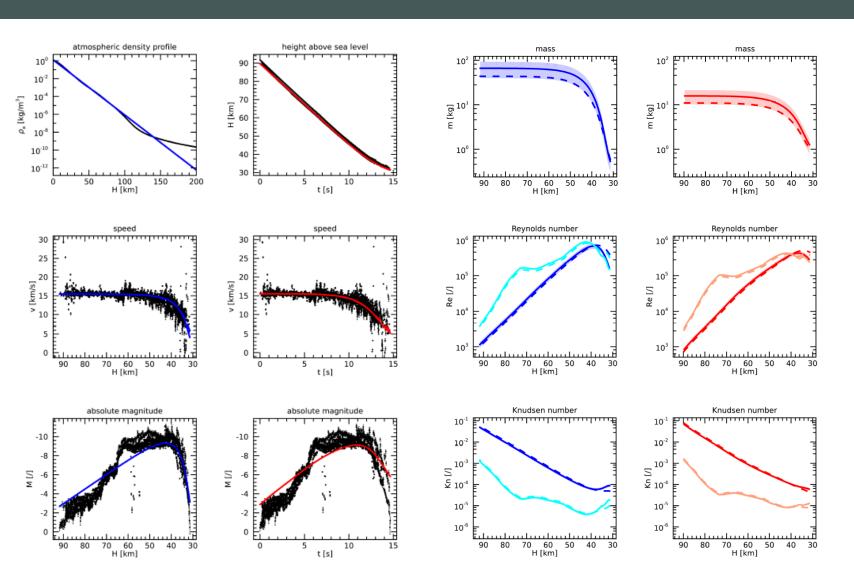
Two approachs:

- Analytical solution (Gritsevich, 2009 & 2011) with some assumptions
- Numerical solution (Ceplecha 1987, Kalenichenko 2006)

Both are evaluated, in 4 total versions:

- dynamical Grit09 / Kale06
- photo-dynamical Grit09 / Kale06 (deceleration + intensity modelling)

The main outputs of the dynamical model evaluation are the mass, section, equivalent radius of the meteoroid as a function of the time. In any case, there are **a lot of assumptions** involved (which are therefore reflected in a **relatively high uncertainty** in the estimation of these values)


#### Dynamic model results

Example: 20220305T185552\_UT 10 cameras

$$\gamma = 16.5 \pm 0.5 \deg$$

$$v_{\infty} = 15.5 \pm 0.1 \text{ km/s}$$
 $M_{\infty} = 10 - 90 \text{ kg}$ 
 $d_{\infty} = 15 - 35 \text{ cm}$ 

 $v_{fin} \sim 5 \text{ km/s}$   $M_{fin} = 0.5 - 1.5 \text{ kg}$  $d_{fin} = 3 - 9 \text{ cm}$ 



#### Orbit

The output from triangulation and dynamical model:

$$(v_{\infty}, \alpha, \delta) \rightarrow (v_{\infty \chi}, v_{\infty y}, v_{\infty z})$$
 = observed radiant

- > correction for Earth's rotation speed
- Correction for Earth's gravitational attraction

$$\rightarrow (v_G, \alpha_G, \delta_G)$$
 = geocentric radiant

- > Correction for Earth revolution speed
  - $\rightarrow (v_H, \alpha_H, \delta_H)$  = heliocentric radiant
- ORBITAL ELEMENTS

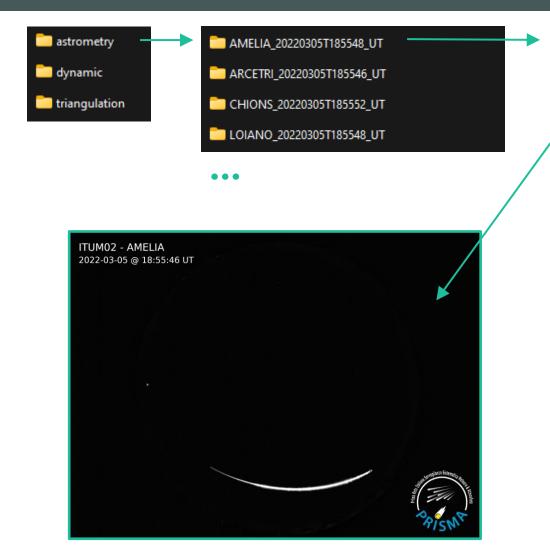
$$v = (v_{Hx}, v_{Hy}, v_{Hz})$$
  
 $\vec{h} = \vec{r} \times \vec{v}$ 

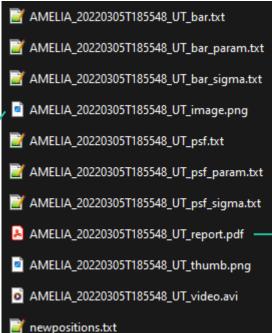
$$\vec{e} = \frac{1}{GM} \left( \left( v^2 - \frac{GM}{r} \right) \vec{r} - (\vec{r} \cdot \vec{v}) \vec{v} \right)$$

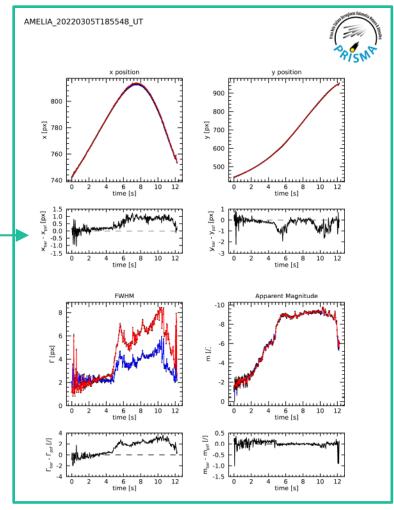
$$\cos(\Omega) = \frac{h_y}{\sqrt{h_x^2 + h_y^2}}$$

$$\cos(i) = \frac{h_z}{h}$$

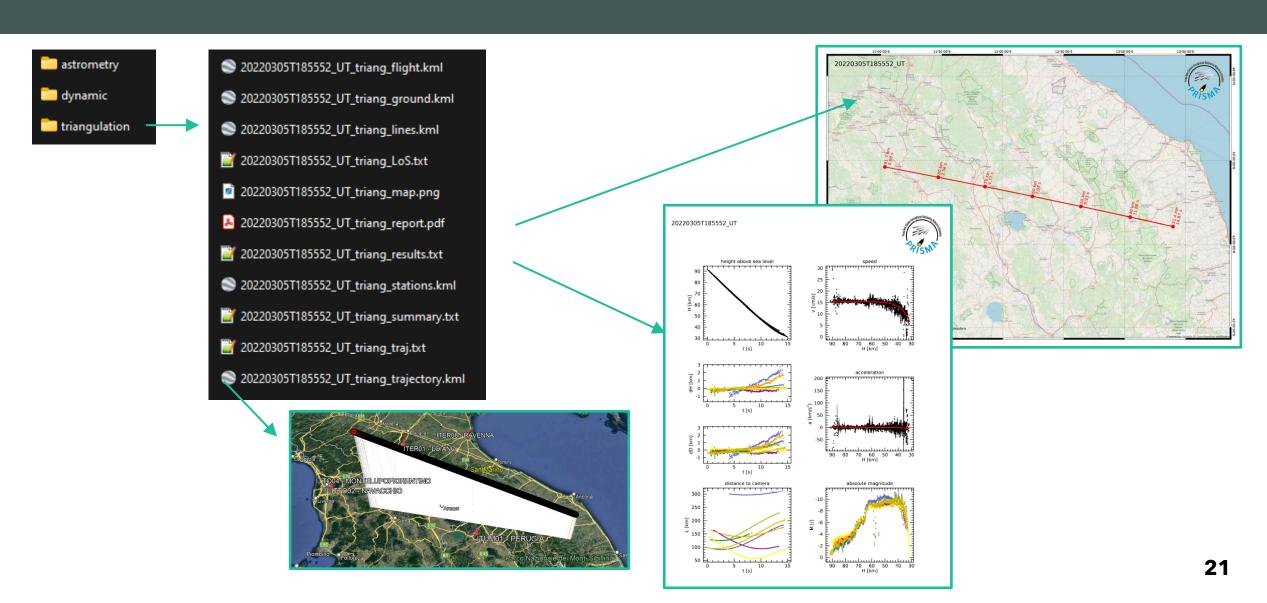
$$\cos(\omega) = \frac{-h_y e_x + h_x e_y}{e\sqrt{h_x^2 + h_y^2}}$$


$$\cos(\Omega) = \frac{h_y}{\sqrt{h_x^2 + h_y^2}}$$

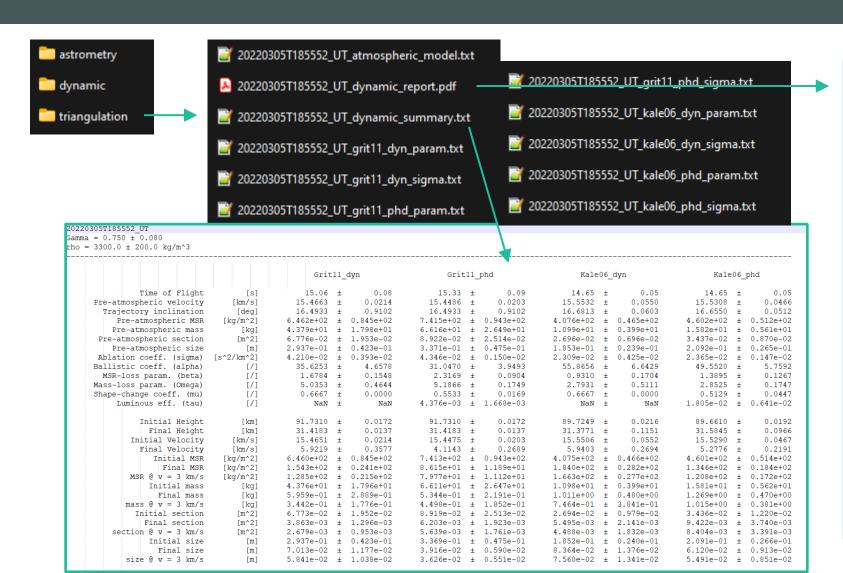

$$a = \frac{1}{\frac{2}{r} - \frac{v^2}{GM}}$$

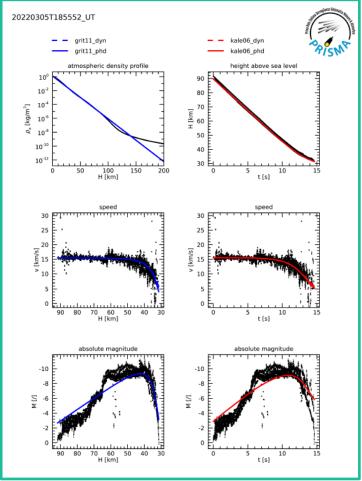

#### Orbit results




### Output data from event pipeline






### Output data from event pipeline



### Output data from event pipeline





#### Conclusions

- Everything is (almost) ready for a first data release
- We are deploying the pipeline in the servers installed at INAF OATo
- Most likely, the processing of the data collected up to 2022 will take place in the next months
- The database, including calibrations and events/results, will be hosted at INAF IA2 (OATS) and will be accessible to the collaboration through an user interface
- Data will be provided in tar.gz archives and will include FITS header tables with metadata that will be searchable throught the database interface
- With the data release we will provide a document with a detailed description of the content of the database

#### THANK YOU FOR YOUR ATTENTION!