

Termomeccanica

Mechanical engineering to support the development of the ESO next class of instrumentations

Vincenzo Cianniello

INAF Mechanical Engineer in MORFEO/MAORY **UNINA** PhD candite in Industrial Engineering

O.A. CAPODIMONTE - NAPOLI FORUM DELLA RICERCA SPERIMENTALE E TECNOLOGICA 2022 RSN 5 - INAF

Bologna, 22-24 giugno 2022

- Introduction to the "Team"
- Team involvement in INAF projects
- Case Study MAORY: design activities and FE Analyses
- System level activities
- Integrated design & CDF

the Team

Mechanical Designer and FEM Analyst (at the ALGOR age)

CAD & FEA expert (at ANSYS time)

Enrico Cascone Electronics Design (at the Maccon age)

FORUM TECNOLOGIE INAF - O.A. CAPODIMONTE

Main projects and activities

Team activities:

System activities: PA/QA RAMS Requirements

Mechanical design: 3D CAD FEA Structural validation

Electronics design:

- System architecture
- Control hardware design
- Harness

Main previous and current projects:

- **MORFEO/MAORY**
- CUBES
- SPHERE+
- ASTRI
- SPHERE-IFS
- X-SHOOTER
- ... and so on

Case study: MAORY

The **MAORY** instrument project entered its phase B in February 2016. Official review (that formally closes this phase) of the Preliminary design is underway, taking into account best scientific performance requirements and interface constraints. MAORY was changed completely during the trade-off consolidation phase (2018-2020), as the images below show.

Optimization of ratio between global mass and first lowest eigenfrequency of instrument

5.2 Eigenfrequencies

[R-INS-1187] The lowest eigenfrequency of each Nasmyth and Coude instrument shall be higher than 7Hz. The ^{/A//} corresponding analytical verification shall assume infinitely rigid interfaces.

The mother of all requirements

This ESO requirement derives from the **need to decouple** the first frequency of the main structure of the ELT telescope from those of the scientific instruments installed on the Nasmyth platforms at about 30 meters above the ground The 1st eigenfrequency of instruments defines, also, the specification for setting the earthquake analysis. At experimental level, a correlation between the frequency and the earthquake effects, is noted by ESO. For this reason the accelerations to set are mitigated for the instruments that have the higher first frequency values (as shown below).

The FEA settings for <u>earthquake analysis</u> \rightarrow the worst <u>survival condition</u> for instruments

Subsyster Design FE Mode Modal FEA generation subsystem Eigenfrequencies Mode shapes Effective masses minimum frequency fmi fmin < faco $f_{min} > f_{n}$ detailed f_{min} = f_{REQ} procedures Reduction factor Floo Eloor time Subsystem Response Spectrum Response Quasi-statio FEA Spectrum FEA FEA procedure Maximum stress displacement. safety margin no Acceptability criteria met yes Verification finished

DI CAPODIMONTE

1) f_{min} < f_{REQ}: The subsystem eigenfrequency requirement is not met. Redesign of the subsystem is necessary.

> The subsystem eigenfrequency requirement is met. The quasistatic subsystem accelerations shall be applied to the subsystem structure.

 3) f_{min} > f_{REQ}: The subsystem eigenfrequency requirement is met. The quasistatic subsystem accelerations may be multiplied with the appropriate reduction factor before it is applied to the subsystem structure.

By using the structural FE Model of the subsystem the static deformations and stresses shall be analysed. The maximum action effect (AEd1, AEd2, and AEd3) due to the three orthogonal seismic acceleration components shall be calculated with the Percentage Combination Rule:

a) AEd1 = ± Edx ± 0.3*Edy ± 0.3*Edz

b) AEd2 = ± 0.3*Edx ± Edy ± 0.3*Edz

c) AEd3 = ± 0.3*Edx ± 0.3*Edy ± Edz

where "±" means "to be combined with"

- Edx Quasi-static earthquake acceleration in the x-direction
- Edy Quasi-static earthquake acceleration in the y-direction
- Edz Quasi-static earthquake acceleration in the z-direction.

The maximum seismic action effect due **AEd** is the worst case of all the possible load combinations:

AEd = max (AEd1, AEd2, AEd3)

In the following chart are showed the starting accelerations values for Nasmyth instruments, highlighted by the yellow rectangle, for the earthquake analysis.

The force exerted by any of the Nasmyth instruments on any attachment point shall not exceed a maximum load of:

Force: 500 kN in the X_{Az} and Y_{Az} directions

2) fmin = fREQ:

Force: 1000 kN tensile and 1250 kN compression in the Z_{Az} directions

this shall apply in any operational configuration and any survival condition (NCR, earthquake loads, wind load, etc.).

The flanges shall be loaded with the forces directed to the centre of the flanges in order to avoid local moments. The maximum eccentricity of loads as defined in EN 1998-1-8 section 2.7 shall be <10% of the width of the flange.

For the calculation of the forces on the flanges safety factor SF = 1.3, according to AD7, shall be considered in all load cases, including survival and accidental load cases.

	Load case n°	Acceleration X Component	Acceleration Y Component	Acceleration Z Component	Maximum displac.	Maximum Equivalent von Mises Stress		
		mm s^-2	mm s^-2	mm s^-2	mm	MPa		
	1	32361,78	9708,53	16229,92	4,46	269,21		
	2	32361,78	9708,53	3383,28	4,21	230,09		
	3	32361,78	-9708,53	16229,92	9,10	323,45		
	4	32361,78	-9708,53	3383,28	8,85	277,86		
	5	-32361,78	9708,53	16229,92	8,48	209,43		
	6	-32361,78	9708,53	3383,28	8,72	254,05		
	7	-32361,78	-9708,53	16229,92	4,03	194,98		
	8	-32361,78	-9708,53	3383,28	4,12	209,58		
	9	9708,53	32361,78	16229,92	12,04	282,86		
	10	-9708,53	32361,78	16229,92	14,21	242,75		
	11	9708,53	32361,78	3383,28	12,15	243,84		
	12	-9708,53	32361,78	3383,28	14,39	259,61		
	13	9708,53	-32361,78	16229,92	14,70	328,14		
	14	-9708,53	-32361,78	16229,92	12,40	206,39		
	15	9708,53	-32361,78	3383,28	14,50	283,08		
	16	-9708,53	-32361,78	3383,28	12,23	223,39		
	17	9708,53	9708,53	31234,02	3,32	200,17		
	18	9708,53	-9708,53	31234,02	5,84	235,47		
	19	-9708,53	9708,53	31234,02	4,99	206,73		
	20	-9708,53	-9708,53	31234,02	3,45	210,82		
	21	9708,53	9708,53	-11620,82	3,20	98,77		
	22	9708,53	-9708,53	-11620,82	5,07	98,72		
	23	-9708,53	9708,53	-11620,82	5,46	165,02		
	24	-9708,53	-9708,53	-11620,82	3,14	139,95		
	MAX value				14,7	<mark>328,14</mark>		

FEA to check the instrument stability → the operational condition: wind + Nasmyth Distortion

Wind Analysis

For both the cases the Main Support Structure shall perform a wind induced distortion analysis considering the average wind speed and the air density in the following directions (separately), as shown in Figure below:

- +Y, acting on the right side of MAORY
- · +X, acting on the external side of MAORY

The external loads are evaluated starting from the wind speed and computing the aerodynamic resistance of the structure $(R_{\rm a}),$ through the formula:

 $R_a [N] = \frac{1}{2} \rho v^2 x A_{sect} x C_R$

- ρ is the air density [kg/m3]
- v is the average wind speed [m/s]
- A_{sect} is the area of the normal section (1 to the direction of the loads)
- **C**_R is the drag coefficient for the reference area against with the wind flows

Nasmyth Induced Distortion Analysis

The Induced Distortion Analysis studies the impact of the distortions of the Nasmyth platform on the MAORY MSS. It is carried out imposing the specific boundary conditions on the attachment points, i.e. a set of the imposed displacements on the FE constraints between the NP and the MSS.

Basing on the Static Analysis and according to the Main Structure Technical Specifications (AD6), the Nasmyth Induced Distortion Analysis is performed just for the MSS. To verify the compliance with Tech Spec just one simplified analyses (according to AD9) is required.

Starting from the displacements defined in the following list and showed in Figure below, the outputs for the Nasmyth Induced Distortion Analysis, i.e. the displacements and rotations of each optomechanical elements, are used to check the stability of the system.

+Y direction

In order to evaluate the **stability under operational conditions of the MAORY MSS**, the contributes of the Nasmyth Induced Distortion Analysis and the Wind analysis (under operational conditions) have been summed along X+ and Y+ separately.

The road to the MAORY_2021 mechanical design Optimization of ratio between global mass and first lowest eigenfrequency of instrument

The road to the MAORY_2021 mechanical design

This mechanical configuration represents the best result for MAORY steel plate bench.

FEA Results Type_2 Static and Modal Analysis

Modified Offner Configuration (MOC) optical path

FEA Results MOC_Type_I Static and Modal Analysis

FORUM TECNOLOGIE INAF - O.A. CAPODIMONTE

The road to the MAORY_2021 mechanical design

It is clear that applying the same design philosophy did not provide encouraging results \rightarrow it was necessary to change something significant ... !!

For the same optical configuration, with small modifications, the new mechanical design was developed \rightarrow the "spatial reticular structure"

A thermal enclosure was also developed for this configuration

This mechanical solution allows to obtain a net gain of at least 5T → MISSION COMPLETE

Name	x [mm]	y [mm]	z [mm]	Mass [kg]	Mass with 20% [Kg]
Elevator + FP	398	0	0	1000 + 230	1500
M6	-6731	0	0	511	613
M7	-3094	1179	0	624	749
M8	-6681	1059	0	340	408
DM9	-3856	2401	0	1000	1200
DM10	-6265	2306	415	1000	1200
DC+LGSo	-739	2260	1868	860	1032
M11	-88	6055	424	623	748
M12	-6249	3518	423	556	667
M13b	-1604	3194	1306	606	727
LGS	-414	2177	-200	700	840
				8050	9684
Thermal Cover	**with	nout contince	ny**	3600	3600
				TOTAL	13284

MAORY_MOC_Type_2 FE model and payload

Bologna, 22-24 giugno 2022

The road to the MAORY_2021 mechanical design

But an optical trade-off with a promising vertical configuration (MMC) put us in front of an unprecedented challenge ... **To develop an innovative "vertical" optical bench** ...

The road to the MAORY_2021 mechanical design

FE Model and Payloads applied to MSS_Type_6

Mass Budget installed on MSS (payloads)						
Element name	Net mass [kg]	Percentage of contingency	Gross mass [kg]			
SP	130	20%	156			
M6	178	20%	214			
M7	305	20%	366			
M8	334	20%	401			
DM1/M9	586	11%	650			
DM2/M10	998	9.5%	1092			
M11	291	20%	350			
DC	166	20%				
Holding structure DC+FM1	200	20%	715			
FM1	230	20%				
LGSo	400	20%	480			
FM3	70	20%	84			
Linear stage fixed frame	180	10%	200			
Linear stage cable chains	100	10%	110			
Linear stage mobile frame	142	10%				
FM CU	213	20%	653			
MCA	200	20%				
сти	350	20%	420			
LGS	600	20%	720			
Enclosure MAORY	1600	20%	1920			
Thermal tube MICADO side	40	20%	48			
Electrical routing	270	20%	324			
Glycol routing	80	20%	96			
Thermal ricirculator system	25	100%	50			
Total	7688		9049			

8 T with 9 T of payload

FEA Results MAORY_MSS_Type_6 Static and Modal Analysis

MAORY_MSS_Type_6 Meshed FE model

The road to the MAORY_2021 mechanical design

Upgraded interfaces also at CAD level, to better hosting both optomechanical elements and deformable mirrors

Ribs plate for optomechanics - 6mm

Bottom surface of blue thickness for optomecs -

Upper interface plate for DM2 - 14 mm

Ribs plate for DM - 6mm

Bottom surface of blue thickness for DM - 12 mm

Lower interface plate for DM2 - 12 mm

MAORY_MII_Flip mirror **Optomechanical element**

MAORY M9-MI0 **Deformable mirror Adaptive Optomechanical** element

The road to the MAORY_2021 mechanical design

A full set of analyses was perform in order to verify the global behaviour of the MAORY MSS. To have a better feedback also at local level e.g. critical joints, critical nodes with a large number of elements/beams that converge into them ...some local verifications with a submodeling FEA technique were also performed...

Comparison of maximum displacement between global and local FE model

The road to the MAORY_2021 mechanical design

MAORY Mechanical Design of instrument presented at PDR. This Mechanical concept, designed and validated in **INAF-OACN**, under responsibility of **Vincenzo De Caprio**, was fully approved by ESO.

System level activities

The analysis of the **integrated model** allows us to say that the first eigenfrequency is bigger than the one required by technical specification

T	abular	Data	Т	abular	Data	Т	abular	Data
	Mode	Frequency [Hz]		Mode	▼ Frequency [Hz]		Mode	Frequency [Hz]
1	1,	31,695	1	1.	31,455	1	1.	31,618
2	2,	35,628	2	2	35,453	2	2	35.648
3	3,	39,785	3	3,	36,234	3	3,	39,548
4	4,	39,964	4	4	37,936	4	4,	39,79

The first eigenfrequency is not a whole structure mode, but involve just in a small participant mass localized in the bracket of the FMCU. Anyway, the minimum value of the eigenfrequency mode is around 31.45 Hz for the Position_2.

Due to the so high 1st eigenfrequency of the CU Selector integrated model, no particular attention has to be paid about the modal analysis, i.e. the model behaves better than what the requirements asks. In fact:

fmin (31.45 Hz) > fmin_REQ (21 Hz)

Integrated Design

Integrated Design is the result of a collaborative approach by a multidisciplinary team of specialists with common objectives. Passionate experts enthusiastically undertake, even the most complex challenges, synergistically and creatively contributing to the enhancement of each project.

- Increase and improve the quality of interactions
- Optimize day-to-day collaboration among the members of the team for electromechanical design.

- Save a lot of time in the design phase
- Issues are identified in early design phases: all the team is involved
- Better traceability of the design steps through Product Data Management tool (PDM).

INAF Mini-Grant Cianniello

Richiesta: Un approccio integrato alla progettazione meccanica per strumentazione astronomica da terra: dal concetto alla prototipazione rapida 3D, attraverso metodi di trade-off ed analisi FE FINAL

Richiesta collegata alle seguenti Schede

sono: CAD parametrizzabili, Finite Element Analyses, trade-off e prototipazione rapida 3D.

Titolo Scheda		Acronimo	Coordinatore	Azione
MAORY, the Adaptive Optic	Module for ELT	MAO	paolo.ciliegi	Visualizza Scheda
Proposer CV				
le allegato: <u>CVfile Curriculu</u>	<u>n Vitae - Cianniello Vincenzo.pdf</u>			
General Info				
Request Title				
Jn approccio integrato alla	progettazione meccanica per strumenta	azione astronomica da terra: dal conce	tto alla prototipazione rapida	3D, attraverso metodi di trade-off ed an
Ē				
Type of Grant	Primary RSN	Request Author's Na	me and Email	
Mini Grant	RSN5	vincenzo.cianniello vincenz	o.cianniello@inaf.it	
	ctivities covered by the present	request do not have any fund	ing already available	_
Declaration that the a				
Declaration that the a				
Declaration that the a True Declaration that the p	roposed project satisfies the red	quirements described in the IN	IAF Call	
Declaration that the a True Declaration that the p True	roposed project satisfies the rea	quirements described in the IN	IAF Call	
Declaration that the a True Declaration that the p True Short Abstract	roposed project satisfies the red	quirements described in the IN	IAF Call	

Modular approach

Concurrent design facility

This **CDF** allows a coordinated and multidisciplinary effort in the design phase, during the feasibility study and the preliminary design phase. Concurrent design main facility in Naples as part of **STILES** proposal in the **PNRR** contest.

Two other CDF nodes in Brera and Medicina

New nodes in other INAF Institutes potentially realized in the future

Design of the proposed **CDF** – exterior (left) and Internal layout (right)

GRAZIE VINCENZO.CIANNIELLO@INAF.IT

RSN 5 - INAF

Bologna, 22-24 giugno 2022