

Bologna, 22-24/06/2022 – Forum della Ricerca Sperimentale e Tecnologica in INAF

Elettronica e Rivelatori

IAPS ISTITUTO DI ASTROFISICA E PLANETOLOGIA SPAZIALI

Claudio Macculi

in rappresentanza di tutto il personale coinvolto nelle attività

Some information

- IAPS is an institute deeply involved in Design, Integration and Test of detectors and electronics for high energy and planetology from R&D to Scientific mission oriented items
- There is a production chain starting from the test in lab and subsequent testing in controlled environment (e.g., Clean Rooms) and/or specific facilities tailored for Space Applications
- Activities usually adopt the ECSS standards, as well as NASA, JAXA or Chinese standards, as required by the specific project
- "Detectors and Electronics" is an important activity of the institute featured by a rather regular funding

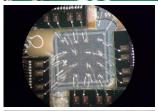
We are going to present:

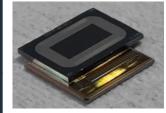
- Silicon Detecors Lab
- X-ray polarimetry
- Experimental Plasma Physics
- ENA instruments
- Cryogenic Microcalorimetry for Particle Detection and X-ray Spectroscopy

Silicon Detecors Lab

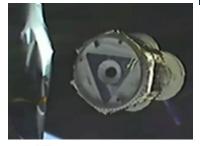
M. Feroci, Y. Evangelista, E. Del Monte, A. Argan (INAF HQ), F. Ceraudo, G. Dilillo, G. Lombardi, A. Nuti

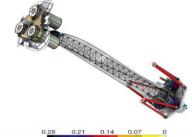
DRIVER: Spectral-Timing and Imaging in X-rays

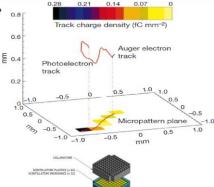

Silicon Detectors

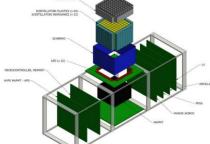

ASICs, Front-End Electronics

Skills	Facilities	Comments
Test and calibration of X-ray detectors	 X-ray irradiation facility (2-30 keV) and radioactive sources Micrometric linear and rotary stages Lab electronics and data acquisition systems Climatic & vacuum chambers 	In collaboration with INAF/OAS and IASF-Mi, INFN Trieste and Trento, Polytechnic of Milan, University of Pavia, Fondazione Bruno Kessler. Currently funded projects: eXTP, ADAM, HERMES
Radiation and Micrometeoroids Tests	 GEANT modelling and simulation tools SPENVIS tool Set-up and DAQ for tests at external facilities 	Tests of both sensor and ASICs: NIEL, TID, SEE. Facilities used so far: PSI (Villigen), MPIK (Heidelberg), RADEF (Finland), Calliope (Casaccia)
Space Missions	Design, development and managementSmall, Medium size, Cubesats	AGILE, LOFT, eXTP, HERMES, STROBE-X
Thermo-mechanical Design, Analysis & Tests	SolidWorksAnsysThermica	Tests at SERMS (Terni) and PoliMi




X-ray polarimetry


P. Soffitta, E. Costa, F. Muleri, E. Del Monte, S. Fabiani, A. Di Marco, A. Rubini, P. Loffredo, F. La Monaca, J. Rankin, L. Pacciani, A. Ratheesh, R. Ferrazzoli, D. E. Kim, G. Lombardi

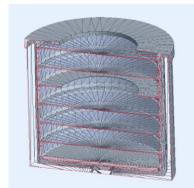

DRIVER: 1) Gas cell detectors for photoelectric X-ray polarimetry 2) Compton polarimetry with PMT and SiPM for scintillators readout 3) Detector simulation with GEANT4 4) Project Office of space projects (IXPE, CUSP)

Skills	Facilities an	d tools	Comments
Detector characterization a calibration (gas ar state)		ion facility in imbers xtures flowing	Polarized and unpolarized X-ray sources (≨2-30 keV) based on X-ray tubes, radionuclides, Bragg diffraction and fluorescence (Calibration of IXPE Detector Units). He flowing for low energies.
 Detectors, payloa mission design, Detector simulation 	project management so	· ·	Simulation of: 1) IXPE instrument background, instrument performance, 2) CUSP Compton X-ray polarimeter (Cubesat Phase A mission for solar flares and space weather), 3) Hype-X new photoelectric gas polarimeter development exploiting 3D track imaging in gas cell
 Development of panalysis software 	ython • Python and ftools N analysis software (I)		IXPE scientific data analysis

Experimental Plasma Physics

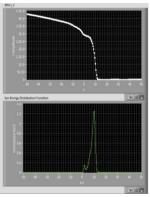
P. Diego, E. Fiorenza, A. Morbidini, F. Nuccilli, E. Papini, A. Parmentier, R. Rispoli, N. Vertolli

Electric Field Detector for CSES-02


Developed in collaboration with INFN, the EFD (Electric Field Detector) has been **designed to** measure the ionospheric electric field components as a voltage difference between multiple probe pairs.

The state-of-the-art design of the front-end electronics and analog acquisition board enables a sensitivity in the order of V/m across the range from DC to 3.5 MHz. The instrument provides sensor potential in the ULF band (< 3 Hz), electric field components in the ELF (3-3000 Hz) and VLF (3-30 kHz) bands, and FFT in the HF band.

Plasma Analyzer


Innovative concept fit for cubesat constraints.

The segmented electrode allows for detection of plasma velocity direction as an Ion Drift Meter.

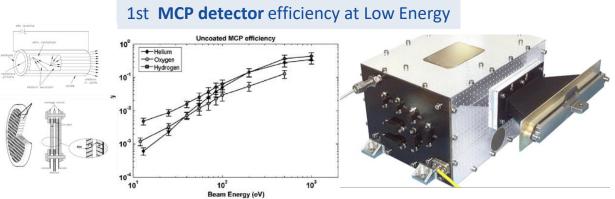
The polarization of the external grids prevents electrons from entering the sensor cavity, while inner grids allow the measurement of energy and fluxes for different ion species.

Langmuir probes to measure plasma density and temperature (left figs.), **RPA** (i.e. analyzer) to measure ionospheric plasma energy (central figs.), and solar wind energy (right fig.)

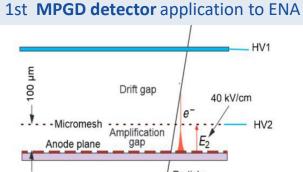
Plasma Diagnostic for Laboratories

Sensors and acquisition systems are being developed by the team to monitor plasma parameters inside the SWIPS chamber at INAF/IAPS (follow "Laboratori e Facilities" session).

This monitoring is needed to characterize other instruments, prototypes, and various kinds of space borne technologies.

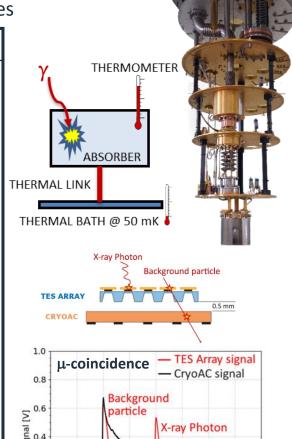

ENA (Energetic Neutral Atoms) sensors

E. De Angelis, R. Rispoli, L. Colasanti, N. Vertolli, F. Nuccilli, M. Moroni


Innovative instrument developments for ENA detection to measure Mass, Energy and Direction of particles

(mainly H, He O atoms in the range 1-100keV). Specific detector upgrades for ENA application:

- > instrument concept based on MCP detectors (MicroChannel Plate)
- i.e. ELENA/SERENA instrument on board BepiColombo mission: first ENA direct detection technique with 2-stage MCPs, discrete anode system, read-out eletronics (FPGA,ASIC....)
- > instrument concept based on MPGD detector (MicroPattern Gas Detector)
- i.e. SWEATERS project to realize first compact gas sensor to detect ENA


Cryogenic Microcalorimetry for Particle Detection and X-ray Spectroscopy

L. Piro, C. Macculi, M. D'Andrea, S. Lotti

DRIVER: - Cryogenic Anticoincidence particle detectors for Low particle background applications (main present activity)

- High resolution X-ray spectroscopy (ΔE of few eV@6keV) for Astrophysics and Cultural heritage studies

Skills	Facilities and tools	Comments	
 Design, integration and test of Cryogenic Microcalorimeters based on Transition Edge Sensors (TES) 	• Cryogenic facilities (see "Laboratori e Facilities" session) to work at the following temperatures to be inserted in a Clean Room Class ISO7 and ISO5:	 Italian collaboration with Phys. dep. Genoa Univ. (chip design and manufacturing), CNR/IFN and TAS-I (electronics) Involved in ESA CTP programs (OptiTES) 	
Cryogenic and warm low-noise electronics based on SQUID magnetometers	 ~ 50 mK for TES ~ 4 K for SQUID electronics • EMI filtering & magnetic shielding (down to ~ 50 mK) to enable TES + SQUID performances 	 Financial support from: ASI, ESA, INAF, UE, IAPS CoPI-ship (L. Piro) of ATHENA X-IFU; we are responsible for the development and delivery of its Cryogenic AntiCoincidence 	
Advanced Modelling of particle detectors to address design and guide data analysis	 Geant4 Toolkit (C++) (see "Tecnologie informatiche" session) 	Detector (CryoAC) to the prime Cold Front End Electronics PCB Silicon suspended	
Basic Mechanical, Thermal and Magnetic design	SolidWorks + Comsol	absorber (1 cm²) Platinum heater (x4)	
Development of Data Acquisition, Measurements Automation and Data Analysis software	 Labview + Python languages Data analysis routines (Optimal filtering, PCA) 	Silicon beam (x4)	

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 Time [ms]

Ciao