

Francesca Zuccarello Università di Catania & INAF on behalf of the Italian Teams of EST, GREST, PRE-EST, SOLARNET

Summary of EST future capabilities

Telescope On axis Gregorian telescope

Aperture 4.2 m with a central obscuration of 1.1 m

Secondary mirror ASM with 5 degrees of freedom (piston, δx , δy , and tip-tilt) Mount Altitude-azimuth mount

FOV 125" diameter MCAO AO

Diffraction limited at 0.025" at 500 nm Spatial resolution

Polarimetric accuracy 5×10^{-4} of I_c Spectral range 380-2300 nm

Observations Multi-wavelength simultaneous observations

Coudé lab Non-rotating platform

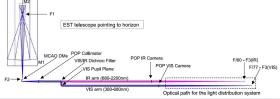
1. Integral Field Spectropolarimeters, Instruments

2. Tunable Imaging Spectropolarimeters.

3. Fixed Band Imagers

Polarimeters Polarimeter(s) in the blue, visible, red and near-infrared

Lifetime At least two Hale solar cycles, i.e. 44 years


EST Science

The European Solar Telescope is an initiative to construct and operate a ground-based large-aperture (4-metre class) solar telescope for the visible and near-infrared. The project is promoted by the European Association for Solar Telescopes (EAST), which gathers research institutions from 18 European countries.

The top-level science questions that drive EST can be summarised

- as: – How does the magnetic field emerge to the surface and evolve?
- How is the energy transported from the photosphere to the chromosphere?
- How is the energy released and deposited in the upper atmosphere? Why does the Sun have a hot chromosphere?
- Wave propagation from the photosphere to the chromosphere Dynamics of large-scale magnetic structures

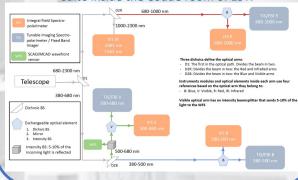
EST Optical Design

Optical layout of EST. The telescope delivers the focal plane F3 to the instruments after passing the MCAO set of deformable mirrors and the Pier Optical Path (POP) system.

Left: Preliminary design of the primary mirror assembly (by SENER-aerospace). Right: Concept of the ASM (by TNO).

C. Quintero Noda et al. 2022, submitted to A&A

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreements No 739500 (PRE-EST) and No 312495 (SOLARNET).



Left: Telescope structure (yellow), the pier (green) and the enclosure (red) of the EST.

Below: EST site at Roque de Los Muchachos Observatory (La Palma, Spain), approved by the International Scientific Committee of the Canarian Observatories

Light distribution and instrument suite inside the Coudé room of EST

Summary of the Tunable Imaging Spectropolarimeter general requirements

Spatial resolution Diffraction limit in each optical arm FOV Cycle time A measurement cycle per spectral line of 20 s (goal: 10 s) Spectral resolution

Wavelength samples 10 per line including a nearby continuum point

Minimum of 50000 Number of filters per module At least 5

Reference spectral lines Blue: Ca II 396 nm, Ba II 455 nm, Sr I 461 nm, H_β 486 nm

2. Visible: Mg I 517 nm, Na I 589 nm, Fe I 630 nm, H $_{\alpha}$ 656 nm 3. Red: Fe I 709 nm, K I 770 nm, Ca II 854 nm Broadband reference camera Each module has 2 reference broadband cameras to perform

image reconstruction techniques Operation modes 1. Narrowband spectropolarimeter

Dual-beam to reduce the seeing-induced crosstalk Polarimetry

EST Timeline, People and Funds

- Project started in: 2008 First light planned for 2028 2029
- ~ 620 European researchers; ~ 40 Italian researchers; 3 Italian SME involved in FP7 and H2020 related projects
- Opportunity for in-house R&D and technologic transfer (MCAO, optomechanic design, big data, data mining, instrument control,...)
- Total EC Funds : 26.2 M€; EC funds to Italy:: 3.28 M€