
genEGSE
Generic Telemetry interpreter

Romolo Politi

IAPS-Rome – SU Lecce
Laboratorio di Astroinformatica e Planetologia Digitale

The Laboratory

The Laboratory of Astroinformatics and Digital Planetology (LAPD) is “collective” of (data) scientist
founded to share knowledge, experience and libraries.

The project will be presented is the first native LAPD software.

Zoom out

genEGSE is the first tile of a largest project.

We want build a framework all the ground segment activity (uplink and downlink)

Timeline
editor

Instrument
Simulator genEGSE Calibration Data

exploration

Zoom out

genEGSE is the first tile of a largest project.

We want build a framework all the ground segment activity (uplink and downlink)

Timeline
editor

Instrument
Simulator genEGSE Calibration Data

exploration

uplink downlink

Zoom out

genEGSE is the first tile of a largest project.

We want build a framework all the ground segment activity (uplink and downlink)

Timeline
editor

Instrument
Simulator genEGSE Calibration Data

exploration

uplink downlink

Ready a not
general prototype

Data Levels

Introduction

genEGSE is a generic telemetry interpreter.

It use an abstraction layer for the structure of the telemetry.

The customization is done using a descriptor of the specific telemetry called Logical Model. The Logical
Model is a formalization of the ICD.

The Logical Model

Logical Model vs ICD

dataType

Logical Model ICD

APID

Describes the general structure of data, output
and format

Brick

Describes the single data field.
Could be explicit or implicit
The structure depends on the dataType.

Field

Attribute

Is the individual brick’s characteristics

DATA

MEM EVENT

HK

ACKLogical
Model

DATATYPE

HK
HK
HK
HK
HK
HK
HK
HK
HKTEMP.

FPA

HK
HK
HK
HK
HK
HK
HK
HK
HKTEMP

FocalP

HK
HK
HK
HK
HK
HK
HK
HK
HKTEMP.

OPT.B.

Temperature Optical Bench
• bit position
• Len
• Variable type
• Calibration type
• Calibration factors

BRICK

BRICK
Attributes

HOUSEKEEPING

Logical Model

To develop the Logical Model, the following elements are necessary:

• Dictionary: a list of keywords to describe all Logical Model/ Brick attributes;

• Grammar: a set of rules to write the attributes and the possible values associated;

• Syntax: a set of rules on the order and hierarchy of attributes and their correlation.

Logical Model Examples

The logical model is written in non-standard YAML format YAML is a digestible data serialization
language often used to create
configuration files with any programming
language.

Logical Model Examples

Logical Model Examples

Logical Model Examples
Implicit brick

Explicit brick

HK Calibration

For the Housekeeping is implemented
a calibration module.
Three calibration modes was defined:
• Replace
• Proportion
• Ramp

HK Calibration

The software

Main info

• Developed in Python 3.10.4 (tested for back-compatibility up to 3.6)

• Mix between class and functional programming.

• 3272 line of code.

• Three modes of work:

• Standard run – process all the telemetry file

Main info

• Developed in Python 3.10.4 (tested for back-compatibility up to 3.6)

• Mix between class and functional programming.

• 3272 line of code.

• Three modes of work:

• Standard run – process all the telemetry file

Integration in external pipeline
genEGSE(inFile: str, configuration: str, logger:logging, debug=False, verbose=False, showConf: bool = False)

Main info

• Developed in Python 3.10.4 (tested for back-compatibility up to 3.6)

• Mix between class and functional programming.

• 3272 line of code.

• Three modes of work:

• Standard run – process all the telemetry file

• CLI mode – Command Line Interface for the analysis of the packets and telemetry

• Validation Mode – For the check of the Logical Model

usage: genEGSE.py [-h] [-i FILE] [-l File] [-L N] [-c File] [-a FILE] [-d] [-v] [-C] [-V] COMMAND ...

Generic EGSE Interpreter

positional arguments:
COMMAND Command to execute

optional arguments:
-h, --help show this help message and exit
-i FILE, --inputFile FILE Telemetry input file
-l File, --log File Set the log file name and position
-L N, --logLevel N Set the log level
-c File, --config File Location and name of the configuration file
-a FILE, --apid FILE APID file to validate
-d, --debug Enable debug mode
-v, --verbose Enable the verbose mode
-C, --showConfig Check ad display the configuration file
-V, --version show program's version number and exit

Command List:

run Run the pipeline
cli Start the CLI interface
validate Start the validation of the config file

Schema
Telemetry

Raw Data

Instrument
Logical Model

genEGSE

Input format

Input format

SCOSpy
https://www.ict.inaf.it/gitlab/romolo.politi/scospy

https://github.com/RomoloPoliti-INAF/SCOSpy

https://www.ict.inaf.it/gitlab/romolo.politi/scospy
https://github.com/RomoloPoliti-INAF/SCOSpy

Project development

Next Steps

• Complete the Logical Model for the imager.

• The DATA dataType is not yet complete

• Design different instrument type

• Optimized the code to reduce redundancy and
streamline operations

• Improve the comments, log and verbosity

• Debug and test of the software

• Dictionary, grammar and syntax formalization

• Write documentation

• Develop additional commands

• Develop TUI, Web Interface (flask)

• Remote control of the pipeline

• Test on other instruments

• Test and optimize the optional parallel
procedures

Next Steps

• Complete the Logical Model for the imager.

• The DATA dataType is not yet complete

• Design different instrument type

• Optimized the code to reduce redundancy and
streamline operations

• Improve the comments, log and verbosity

• Debug and test of the software

• Dictionary, grammar and syntax formalization

• Write documentation

• Develop additional commands

• Develop TUI, Web Interface (flask)

• Remote control of the pipeline

• Test on other instruments

• Test and optimize the optional parallel
procedures

Next Steps

• Complete the Logical Model for the imager.

• The DATA dataType is not yet complete

• Design different instrument type

• Optimized the code to reduce redundancy and
streamline operations

• Improve the comments, log and verbosity

• Debug and test of the software

• Dictionary, grammar and syntax formalization

• Write documentation

• Develop additional commands

• Develop TUI, Web Interface (flask)

• Remote control of the pipeline

• Test on other instruments

• Test and optimize the optional parallel
procedures

Conclusions

• genEGSE is a first brick of a project of a framework for multi mission/instrument telemetry and data
interpretation;

• A prototype was produced for demonstration

Conclusions

• genEGSE is a first brick of a project of a framework for multi mission/instrument telemetry and data
interpretation;

• A prototype was produced for demonstration

Open Issues
• License?

• Distribution?

• Connection to archive?

• Centralization?

