
THE NEW ICT OBSERVING

ARCHITECTURE @ SRT

UNIONE EUROPEA Fondo Sociale Europeo

INAF
 ISTITUTO NAZIONALE
 DI ASTROFISICA
 NATIONAL INSTITUTE
 EOOPAUVOICE

SRT CURRENT STATUS

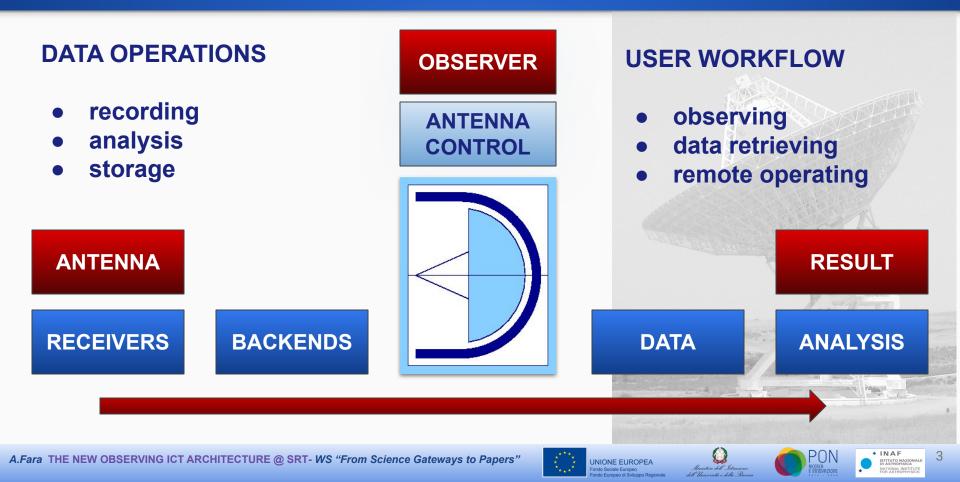
SRT IS A OPEN SKY FACILITY OFFERING

- reliable data over all the installed receiver's spectra
 - high performance data recorders
 - protection from RFI (shielded room)
 - pointing precision
 - atmosphere site monitors
- reliable and stable
 - antenna control software
 - DISCOS = SRT MED NOTO
 - o quicklook and data processing "on the fly"
 - useful consoles
- fast mode to retrieve data
- data protection
 - preserve ownership
 - local data backup
- local and remote observation support
- site services and management tools

SRT IS NOW UNDER UPGRADE

SOME SRT STATISTICS

- 64 m diameter
- active surface 1008 panels
- parabolic and shaped profile
- 4 receivers (P, L,C, K)
 - PLC1Feed K7Feed
- 6 backends
 - o (digital data recorder)
- first light 12/08/2012
 - technical commissioning
 - scientific commissioning
 - 2016 es projects = 16
 - o 2017 SSA maintenace
 - 2018-2021 > 120 projects



DATA OPERATIONS AND USERS WORKFLOW

DATA RECORDING = BACKENDS

Receiver	Backend	Critical data rates in full time operations	Write and/or sharing data disk	NIC vs LAN	Managed by
СК	TP-Xarcos	Not critical	local disk shared as Lustre server	10 Gbps	discos-console/manager
CKL	Roach2	125 GB/h = 2.4 TB/d	HPC Sardara + FE nfs server	1 Gbps	discos-console/manager
CKL	Pdfb3	28 Gb/h = 0.6 TB/d	local disk + nfs server	1 Gbps	seadas
CKLP	Roach1	Not critical	HPC Leap - stand alone	1 Gbps	seadas
CKLP	DBBC	Not critical	Flexbuff - e-vlbi (10 Gbps interfaces)	10 Gbps	FS

BACKENDS ARE OPTIMIZED TO PERFORM

MAXIMUM WRITE SPEED TO EACH OWN DISK SERVER STORAGE

• INAF

ATIONAL INSTITUTI

Data operations: analysis and storage resources

SRT operations started in 2012 in a very small CED hosting backends, discos and site management services

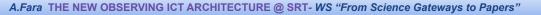
NO SPACE FOR HPC CLUSTER

DISCOS

- Antenna control system
 - SRT MED NOTO
- discos manager (antenna control)
- discos console (observe operations)
- discos shared filesystem
- data LAN interface = 10 Gbps

DATA STORAGE

- 4.7 TB Lustre server shared (DISCOS)
- 4 x 70 TB local storage
- interfaced with local nadir IA2 server
- data LAN and WAN interfaces = 10 Gbps


DATA ANALYSIS RESOURCES

- quick look on discos manager
 - non interactive web page
- data preprocessing = 1 node
- data postprocessing
 - 0 nodes @SRT
 - other resources @OAC
- development tools = 1 node
- data LAN interface = 10 Gbps

IN PROGRESS UPGRADE

- ced restyle
- hpc and storage integration

MORE HPC AND STORAGE RESOURCES

5

Data operations: retrieve from backend to storage

DATA RETRIEVING HAS CRITICAL POINTS

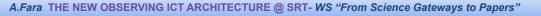
SARDARA

- datarate = 125 GB/h = 2.4 TB/d
- frontend vs SRT local storage link = 1 Gbps
- internal storage 36 TB = DISK FULL in in 9 days h24 (or 18 h12)
- download time
 - 1Gb/s = 125 MB/s for 24 hours observations 2.4 TB = 5.3 hours
 - time to retrieve 36 TB **1Gbps = 3.3 days stop observations**
 - sata 3 disk speed = 750 MB/s = 6 Gbps + 10 Gbps NIC
 - time to retrieve = 13.3 hours

PDFB

- datarate 28 Gb/h = 0.6 TB/d
- frontend vs SRT local storage link = 1 Gbps
- internal storage 2TB = DISK FULL in 3 days h 24
- not upgradable system (open suse 10.3 i386 blackbox)

LONG DATA RETRIEVE TIME IS A BOTTLENECK FOR OBSERVING WITH TELESCOPE



ProjectID/YYYYMMDD/YYYYMMDD-hh-mm-ProjectID-SOURCE-"custom-string"\ /file-subscan.fits and summary.fits

BACKENDS	DISCOS MANAGER	ASTRONOMERS	
backend user	[discos@discos-manager] \$ remap all data folder to discos user	[observer@discos-console]\$ manage observations with discos graphical console	
backend data folder	runs quicklook as service started on boot by, in a non-interactive webpage <u>http://quicklook.srt.inaf.it</u>	[ProjectID@discos-console] \$ submit schedules data read	
	scanning network shared and local data paths	[ProjectID@discos-hpc] \$ data preprocess	

AUTHENTICATION FROM SRT LAN MANAGED BY NIS

INAF

BACKENDS	DATA STORAGE	ASTRONOMERS
backend user	[storage@storage-fb010] \$	[ProjectID@storage-fb010] \$
backend data folder	rsync over ssh exchange keys between storage and backend user	sftp read only account
	scheduled by crontab daemon, based on monthly telescope idle	
	bash tools populating ProjectID accounts and check perms	

AUTHENTICATION FROM SRT WAN MANAGED BY SSH

INAF

Users workflow: remote operations

Observing @ SRT on site

- discos-console and discos-manager runs **Xvnc server** (tigervnc) on fixed customized TCP ports
- a vncviewer session is always open on viewers PC in CR to discos-manager and discos-console

Observing @ SRT from remote location

- Xvnc over ssh tunnel starts on boot from nat-server to discos-console and discos-manager
- personal ssh accounts on nat-gateway SRT server (GARR and GDPR compliance)
- remote guest open a ssh session to nat server and a vnc session to discos as observer and ProjectID
 o scripts tools on client side (Linux,MAC, windows supported)
- user supporters can open another vncviewer session sharing user's desktop console

WE CAN DO IT BETTER

IDEM - LDAP INTEGRATION, VPN etc

Remark: observing @ SRT is always remote

Fine tuning of remote observing procedures and site monitoring has been done in 2020

SRT DID NOT STOP CALL DURING PANDEMIC LOCKDOWN

UNIONE EUROPE

istere dell'Istruzion

A.Fara THE NEW OBSERVING ICT ARCHITECTURE @ SRT- WS "From Science Gateways to Papers"

PON "Research and innovation 2014-2020" D.D. 424 28/02/2018 Action II.1

Potenziamento del Sardinia Radio Telescope per lo studio dell'Universo alle alte frequenze radio Rafforzamento del capitale umano (18 AdR) - PIR01_00010 (18.7 milioni €) - CIR01_00010 (1.4 Milioni €)

- O.R.1 Ricevitore multi-beam criogenico Banda W per SRT (75-116 GHz) 3 AdR
- O.R.2 Ricevitore multi-beam criogenico Banda Q per SRT (33 50 GHz) 2 AdR
- O.R.3 Camera millimetrica per SRT (80 116 GHz) 1 AdR
- O.R.4 Sistema ricevente a microonde compatto e simultaneo a tre-bande per i tre radio telescopi Italiani
 - (22, 43, 86 GHz) 3 (4) AdR
- O.R.5 Sistema metrologico per SRT 1 AdR
- O.R.6 Backends per SRT (W=skarab3 / Q=Abaco / VLBI = DBBC3 / BACK CALC = HPC) (2) AdR
- O.R.7 Fornitura delle interfacce elettroniche e meccaniche per l'integrazione dei nuovi sistemi 1 AdR
- O.R.8 HPC e sistemi di archiviazione per la raccolta ed uso dati SRT 2 AdR
- O.R.9 Potenziamento dei laboratori per lo sviluppo di tecnologie a microonde 2 AdR

OA-CAGLIARI IRA-BOLOGNA OA-ARCETRI OA-CATANIA > 70 people

3 YEARS SINCE 25 JUNE 2019 - END SHIFTED TO FEB 2023 BY MUR BECAUSE OF COVID-19

Data recording: new receivers and backends

Receiver	Backend	MAX datarate expected	Write and/or sharing data disk	Managed by
W Band (Caruso)	Skarab3	100 MB/s 360 GB/h 8.6 TB/d 250 MB/s 0.9 GB/h 21.6 TB/d	BACK CALC + shared Lustre	discos-console - new hpc
Q Band	Abaco	500 MB/s 1.8 TB/h 43.2 TB/d	BACK CALC + shared Lustre	discos-console - new hpc
Bolometer (Mistral)	Skarab3	Not critical	(TBD) write to Lustre or nfs server	discos-console - new hpc
CKLP	DBBC3	Not critical	Flexbuff - e-vlbi (10 Gbps interfaces)	FS

- Shared develop of receivers and backends
- Integration with DISCOS and Archive IA2 compliance
- Integration and optimization with network infrastructure and hpc resources

THE UPGRADE KEY ELEMENTS ARE

STATE OF THE ART HARDWARE AND INTEGRATION BETWEEN NEW COMPONENTS

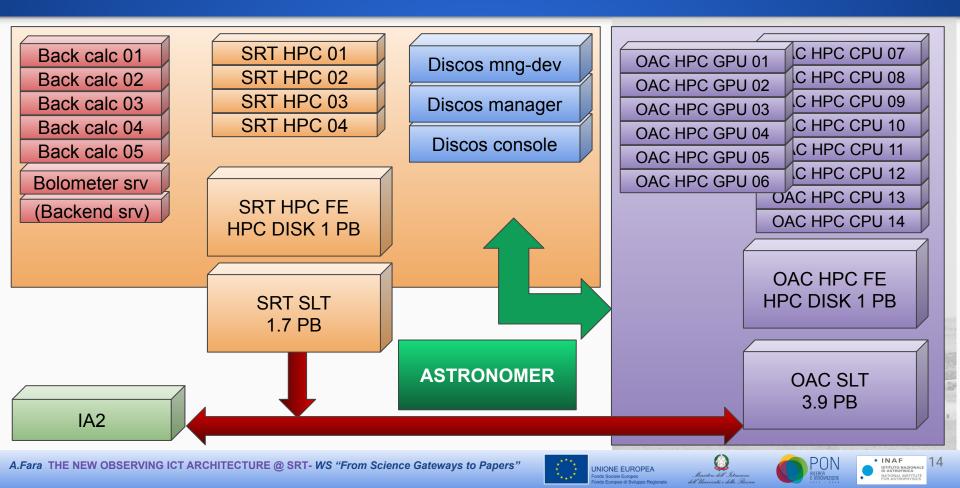
JNIONE EUROPEA ondo Sociale Europeo ondo Europeo di Sviluppo Regionale

Data analysis: new HPC and storage resources

Common configuration	SRT Ethernet 100 Gbps	OAC Infiniband 100 Gbps
n° 2 CPU AMD Milan 7513 16 Core (tot 32 Core) 512 GB RAM DDR4 3200 (max 7 TB) n° 2 x 960 GB SSD n° 4 x HD 1.92 TB SSD = 7.68 TB scratch 1 NIC 100 Gbps Ethernet or Infiniband 2 NIC 1/10 Gbps Ethernet RJ45 n° 2 GPU NVIDIA A40 48 GB RAM DDR6 PCIe (6 nodes)	HPC 4 nodes CPU 2 frontend - CPU BACK CALC (Skarab3 backend) 5 nodes GPU 32 TB scratch HDD 4 slot NVME	HPC 8 nodes CPU 6 nodes GPU 2 frontend - CPU
Storage Scratch Lustre Metadata = 2 nodes Storage Scratch Lustre = 2 nodes	48 TB SSD - 4U 1 PB HDD - 8U	48 TB SSD 1 PB HDD
Storage Long Term Lustre Metadata = 2 nodes Storage Long Term Lustre = 2 nodes	1.7 PB HDD 16U	3.9 PB HDD 24U

CLUSTER @ SRT = specialized nodes and devel test in real production environment

CLUSTER @ OAC = HPC and general purpose (postprocess and devel)



13

Let's put all together: the new ICT @ SRT-OAC observing layout

THANKS

ONLINE REFERENCIES

- PON SRT
- Organigramma PON-SRT
- Radiotelescopes @ INAF
- SRT's documentation

A.Fara THE NEW OBSERVING ICT ARCHITECTURE @ SRT- WS "From Science Gateways to Papers"

INAF
 ISTITUTO NAZIONALE
 DI ASTROFISICA

NATIONAL INSTITUTE

15