Understanding the AGN population: X-ray surveys

arcmin

Chandra Deep Field-South (CDF-S)

≈7Ms Chandra exposure (last obs. at March 2016)

≈3Ms XMM-*Newton* exposure

Deep multi-wavelength coverage

One of the legacy fields (no deeper field for the next 20 yrs)

Chandra: good on-axis PSF (i.e., excellent angular resolution) and low background → Sensitive to faint and distant AGN

XMM-*Newton*: larger effective area (hence photon statistics), but much worse angular resolution and higher background

→ Better for X-ray spectroscopy of relatively bright AGN

The deepest X-ray field: CDF-S

Capable of probing the high-z Universe with some photon statistics

This Lab Outline

- Build the source catalog: Produce a mosaic using 4 long CDFS exposures and provide source detections with different setups. Visualize the outputs and cross-match sources with the official 7Ms source catalog.
- **2. Explore the source catalog**: For one of the newly produced catalogs, produce some relevant plots, and compare quantities with those reported in the 7Ms source catalog
- **3. Analyse the data products**: Fit the X-ray spectra of a few, particularly interesting sources.

a. Reprocess with chandra_repro four different Chandra observations of the CDF-S. Generate all data products (event files, exposure maps...) that are needed to perform a source detection using the merge_obs tool.

a. Reprocess with chandra_repro four different Chandra observations of the CDF-S. Generate all data products (event files, exposure maps...) that are needed to perform a source detection using the merge_obs tool.

```
punlearn merge obs
pset merge_obs infiles=@infile.lis
pset merge_obs outroot=CDFS_4obs
pset merge_obs asolfiles=@asol.lis
pset merge_obs badpixfiles=@bpix.lis
pset merge_obs maskfiles=@mask.lis
pset merge_obs parallel=yes
pset merge obs nproc=4
pset merge obs units=time
pset merge_obs bands=broad
pset merge obs xygrid=0.5:8192.5:1,0.5:8192.5:1
pset merge_obs psfecf=0.9
pset merge_obs psfmerge=exptime
merge_obs
```

a. Download and combine four different Chandra observations of the CDF-S. Generate all data products (event files, exposure maps...) that are needed to perform a source detection using the merge_obs tool.

- a. Download and combine four different Chandra observations of the CDF-S. Generate all data products (event files, exposure maps...) that are needed to perform a source detection using the merge_obs tool.
- b. Run the wavdetect tool to search sources in your observations, using different significance thresholds (i.e., your detections can be more or less reliable) and different maximum wavelet scales (important if there are extended sources and for objects in the external part of the field).

X SAOImage ds9

Download and a. data products (detection usind b. Run the wa using differe

00

File Edit View Frame Bin Zoom Scale Color Region WCS Analysis Help File s3_0.5-7.0_bin1.img Object 3C295 Value 3 FK5 14:11:29.081 +52:13:32.89 а d Physical х 3929.500 4281.500 Image Х 423.500 Υ 605.500 Frame 1 2.000 Zoom Angle 0.000 file help edit view frame zoom scale color region wcs information front back all delete list load save none more or les (important i external pa

DF-S. Generate all orm a source

ervations, ctions can be scales cts in the

- a. Download and combine four different Chandra observations of the CDF-S. Generate all data products (event files, exposure maps...) that are needed to perform a source detection using the merge_obs tool.
- b. Run the wavdetect tool to search sources in your observations, using different significance thresholds (i.e., your detections can be more or less reliable) and different maximum wavelet scales (important if there are extended sources and for objects in the external part of the field)
- c. Cross-correlate the source lists generated in the previous steps with the official 7 Ms Chandra source catalog in the CDF-S (Luo et al. 2017), using varius cross-matching radii.
 - Compute the fraction of 7Ms sources found in the 4-observation mosaic using different thresholds (1E-6/1E-5/1E-4)/scales (5.6/8/11)/matching radii (1/2/3").
 - For your source list which has the largest number matches within 2" with the 7 Ms CDF-S catalog, compute the number of sources detected in the 4-observation mosaic and not in the 7Ms catalog, and visualize them: what are the possible explanations for their detection in the your shorter-exposure mosaic?

Cross-correlate the source lists generated in the previous steps with the official 7 Ms Chandra source catalog in the CDF-S (Luo et al. 2017), using varius cross-matching radii (e.g., 1,2,3 arcsec)

Cross-correlate the source lists generated in the previous steps with the official 7 Ms Chandra source catalog in the CDF-S (Luo et al. 2017), using varius cross-matching radii (e.g., 1,2,3 arcsec)

🛥 🔳 🥙 🖽 🔚 🖶 🕥 Σ 🛄 🛄 🌐 🖄 🔾 👟 🔤 💥 🤾 🕼 😰 🥌

Table List	Current Table Properties
1: CDFS_7Ms_catalog.fits 2: CDFS_4obs.fits	Label: CDFS_7Ms_catalog.fits Location: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CD Name: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CD Rows: 1,055 Columns: 79 Sort Order: Row Subset: All Activation Action: (no action) Broadcast Row
	SAMP-
62 / 3641 M	Messages: Clients: 💽 🍪

Cross-correlate the source lists generated in the previous steps with the official 7 Ms Chandra source catalog in the CDF-S (Luo et al. 2017), using varius cross-matching radii (e.g., 1,2,3 arcsec)

🜈 f(x) 💽 🙆

ELECT 🔀

Table List	Current Table Properties
1: CDFS_7Ms_catalog.fits 2: CDFS_4obs.fits	Label: CDFS_7Ms_catalog.fits Location: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CD Name: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CD Rows: 1,055 Columns: 79 Sort Order: Row Subset: All Activation Action: (no action) Broadcast Row
62 / 3641 M	Messages: Clients: 💽 🌺

	• • • Match Tables	
1) B	Match Criteria Algorithm: Sky	alog
Cross-correlate t with the official 7 al. 2017), using v	Max Error: 2.0	evious steps CDF-S (Luo et ,2,3 arcsec)
Table List <u>I: CDFS_7Ms_catalog.fits</u> 2: CDFS_4obs.fits	Table 1 Table: 1: CDFS_7Ms_catalog.fits RA column: RA Dec column: DEC Table 2 Table: 2: CDFS_4obs.fits RA column: RA Dec column: DEC Output Rows Match Selection: Best match, symmetric Join Type: 1 and 2	k (x) (gna/laboratori_X_Bologna/CE logna/laboratori_X_Bologna/CE
62 / 3641 M	Go Stop Clients:	• 🕹

	Match Tables	
1) E	Match Criteria Algorithm: Sky	log
Cross-correlate with the official al. 2017). using		vious steps CDF-S (Luo et 2.3 arcsec)
Table List CDFS_7Ms_catalog.fits 2: CDFS_4obs.fits	Table 1 Table: 1: CDFS_7Ms_catalog.fits RA column: RA 0ec column: DEC Table 2 Table: 2: CDFS_4obs.fits RA column: RA 0ec column: DEC 0ec column: DEC 0utput Rows Match Selection: Best match, symmetric 1 or 2 All from 1 All from 2 1 not 2	na/laboratori_X_Bologna/Cl na/laboratori_X_Bologna/Cl
62 / 3641 M	Go Stop	►

a. Choose one of the catalogs you built (e.g., the one with largest number of matches with the CDF-S 7 Ms one) and produce some plots (number of counts vs. source significance, vs. exposure time, vs. positional uncertainty, etc.)

- a. Choose one of the catalogs you built (e.g., the one with largest number of matches with the CDF-S 7 Ms one) and produce some plots (number of counts vs. source significance, vs. exposure time, vs. positional uncertainty, etc.)
- b. For the sources associated with the 7Ms source catalog, produce the redshift distribution histogram, Lx vs. z plot, etc.

a. Choose one of the catalogs you built (e.g., the one with largest

🖲 🔵 🍵	TOPCAT
	β 💿 Σ 🛄 🛄 🌐 🖄 \ominus 💺 🚋 💥 🤾 ƒ(x) 🖓 🔴
Table List	Current Table Properties
1: CDFS_7Ms_catalog.fits 2: CDFS_4obs.fits	Label: CDFS_7Ms_catalog.fits Location: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CL Name: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CL Rows: 1,055 Columns: 79 Sort Order: Row Subset: All Activation Action: (no action) Broadcast Row
62 / 3641 M	Messages: Clients: 🖲 🚳

a. Choose one of the catalogs you built (e.g., the one with largest

•••	TOPCAT
Table List	Current Table Properties
2: CDFS_4obs.fits	Label: CDFS_7Ms_catalog.fits Location: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CD Name: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CD Rows: 1,055 Columns: 79 Sort Order: Row Subset: All Activation Action: (no action) Broadcast Row
	SAMP
62 / 3641 M	Messages: O Clients: 💽 🌺

a. Choose one of the catalogs you built (e.g., the one with largest

•••	TOPCAT
	Ο Σ 🛄 🗆 🕀 Ο 🍬 🚋 💥 🤾 🕼 😰 🔴
Table List 1: CDFS_7Ms_catalog.fits 2: CDFS_4obs.fits	Current Table Properties Label: CDFS_7Ms_catalog.fits Location: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CL Name: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CL Rows: 1,055 Columns: 79 Sort Order: Row Subset: All Activation Action: (no action) Broadcast Row
62 / 3641 M	Messages: Clients: O

이는 것을 많은 것이라. 이는 것이라는 것은 것이다. 이는 것이다. 이야지는 것은 것이라는 것은 것이라는 것은 것이라는 것은 것이다. 이야지는 것이다. 이야지는 것이다. 이야지는 것이다. 이야지는 것

- a. Choose one of the produced catalogs and produce some plots (number of counts vs. source significance, vs. exposure time, vs. positional uncertainty, etc.)
- b. For the sources associated with the 7 Ms source catalog, produce the redshift distribution histogram, Lx vs. z plot, etc.
- c. Repeat the operation done in b. after creating subsamples of sources from the 7 Ms source catalog (e.g., spec-z vs phot-z; low vs high band-ratio...). Are there any noticeable trends?

a. Choose one of th	ne produced cataloos and produce some plots	
	Σ	
Table List	Current Table Properties	
1: CDFS_7Ms_catalog.fits	Label: CDFS_7Ms_catalog.fits	
•	Location: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CL Name: /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CL Rows: 1,055 Columns: 79 Sort Order: 10 Row Subset: All 0 Activation Action: (no action) Broadcast Row	VS
62 / 3641 M	Messages: Clients: 🖲 🍪	

a. Cho	ose o	ne of the produ	iced catalogs and	d produce sor	me plots	
			OPCAT(5): Row Subsets) 😰 🧶	
Table List	4	♣: ♣: ♣: ♠ :		# RV 🖸 🕻		
2: CDFS_4obs	Row Su	bsets for 5: CDFS_7Ms	_catalog.fits		_X_Bologna/C[
	ID	Name	Size	Fraction	_X_Bologna/CE	
	_1	All		1055 100		/S
62	2 / 3641 M	Messages:	0	Clients: 💽 🍪		

a Choose () Define Row Subset)ts	
]	
1: CDFS_7Ms_ CDFS_7MS_ CDFS_7M		
Expression: SPECT_REDSHIFT>0	ogna/CE	
OK Cancel	J	VS
62 / 3641 M Messages: Clients: Image: Clients:		

a. Cl	hoose	one of t	the produ	ced catalo	os ar	nd n	roduce some r	olots	
	• • •		то	PCAT(5): Row	Subse	ts			
Table L	4	4 : 4 :	•					×]
2: CDFS	Row Su	bsets for 5	: CDFS_7Ms	_catalog.fits					
	ID	Name		Size	Fracti	ion	Expression		
	_1	All		105	51	00%			
	_2	spec-z		69	5	66%	SPECT_REDSHIFT>0		vs
			SAMP						
	62 / 364	1 M	Messages:	0		Clie	ents: 🖲 🌺		

a. Choose 🗕 🗧	Define Row Subset	S	
f(x)			
Table List – <u>1: CDFS_7Ms</u> 2: CDFS_4obs	Subset Name: phot-z ≎		
	Expression: REDSHIFT>0 & !_2	jna/CE	
		jna/CL	
	OK Cancel		vs
	SAMP		
62 / 3641 M	Messages: Clients: 🖲 🚳		

a. (Choo	se 🗕 🗧 🌢	Define Row Subset	S
Table 1: CDF 2: CDF	Row	Subsets for 5	TOPCAT(5): Row Subsets	yna/CL Jna/CL
	_1 _2 _3	spec-z phot-z	695 66% SPECT_REDSHIFT>0 325 31% REDSHIFT>0 & !_2	
	62 /	3641 M	SAMP Messages: O Clients: •	

- Repeat the operation done in b. after creating subsamples of sources from the 7 Ms source catalog (e.g., spec-z vs phot-z; low vs high band-ratio...). Are there any noticeable trends?
- b. The trends can also be quantified using the Topcat statistics tool.

a. Repeat the operation done in b. after creating subsamples of

		Σ	
h	Table List	Current Table Prop	erties
E	1: CDFS_7Ms_catalog.fits 2: CDFS_4obs.fits	Label: Location: Name: Rows: Columns: Sort Order: Row Subset: Activation Action:	CDFS_7Ms_catalog.fits /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CL /Users/stefano/Documents/work/bologna/laboratori_X_Bologna/CL 1,055 79 All (no action) Broadcast Row
		SAMP	
	62 / 3641 M	Messages:	Clients: 💿 🍪

TOPCAT(5): Row Statistics

Row Statistics for 5: CDFS_7Ms_catalog.fits

C 🖸 🗙

а

Name	Mean	SD Minim	um Max		
VLA_DEC	-5.7216	11.2414	-27.9885		
VLA_20_CM_MAG	3.84106	7.57468	0.		
SPECT_REDSHIFT	1.0809	0.784943	0.034		
SPECT_REDSHIFT_FLAG			INSECURE		
REF_SPECT_REDSHIFT	10.6576	6.54157	2		
PHOT_REDSHIFT_L10	0.542863	0.848864	0.		
PHOT_REDSHIFT_R11	1.03203	0.749643	0.		
PHOT_REDSHIFT_H14	1.07511	0.787236	0.		
PHOT_REDSHIFT_S14	0.82387	0.80083	0.		
PHOT_REDSHIFT_S15	0.809108	0.814808	0.		
PHOT_REDSHIFT_S16	0.936187	0.826658	0.		
REDSHIFT	1.08991	0.776239	0.038		
REF_REDSHIFT			H14		
REDSHIFT_NEG_ERR	0.002921	0.02576	0.		
REDSHIFT POS FRR	0.00354	0.026326	0.		
		All			
Subset for calculations: spec-z					
		phot-z			

- a. Choose one of the produced catalogs and produce some plots (number of counts vs. source significance, vs. exposure time, vs. positional uncertainty, etc.)
- b. For the sources associated with the 7Ms source catalog, produce the redshift distribution histogram, Lx vs. z plot, etc.
- c. Use the PIMMS Online tool (<u>https://cxc.harvard.edu/toolkit/</u> <u>pimms.jsp</u>) to compute the count rate-to-flux correction factor, using the photon index available in the catalog.

Lab Outline

9) Evoloro the course estaled

PIMMS v4.11a: with ACIS Pile up and Background Count Estimation

	Input	Output	
Ł	<u>Count Rate</u> <u>Flux</u> <u>Flux Density</u>	○ <u>Count Rate</u> ● <u>Flux</u> ○ <u>Flux Densi</u>	<u>ity</u>
(Mission:Detector/Grating/Filter:CHANDRA-Cycle 11 ACIS-I/None/None	✓ Flux: Absorbed ✓	
	Input Energy: 0.5 to 2 keV	Output Energy: 0.5 to 2	
N F	Model: Galactic NH: Redshift(z): R Power Law 7E19 0 0 cm**-2 c	Redshifted NH:Photon Index:Count H01.71E-2cm**-2N=AE**-acts/s	<u>Rate</u>
	CALCULATE CLE	EAR HELP	
	PIMMS Predict 6.383E-14 erg/cm**2/s abso	ction: osorbed flux	

Lab Outline

9) Evolara tha course astalad

PIMMS v4.11a: with ACIS Pile up and Background Count Estimation

8		Input			Output	
k	● <u>Count Rate</u> ○	<u>Flux</u> O <u>Flux D</u>	<u>ensity</u>	O <u>Count Ra</u>	ate • Flux •	Flux Density
(Mission: CHANDRA-Cycle 11 ✓	What happens	changing the	e mission (Cycle?	
	Input Energy: 0.5	to 2 k	eV	Output Ene	<u>rgy:</u> 0.5	to 2
N	<mark>∕Iodel:</mark> Power Law ✓	Galactic NH:Red7E190cm**-2	lshift(z): Reds	hifted NH: -2	Photon Index: 1.7 N=AE**-a	Count Rates
		CALCULA	TE CLEAR	HELP		
		PIMM 6.3 erg/cr	MS Prediction: 83E-14 n**2/s absorbed	l flux		

3. Analyse the data products: spectral fitting

Fit *Chandra* spectra for sources whose properties suggest potential interesting outcome (e.g, high-z, high obscuration based on hardness ratio...).

XID_Luo17	Source coordinates	Z	Opt. Class + Info
551	03:32:29.85 -27:51:05.71	3.700	NL (Comastri+11)
746	03:32:39.66 -27:48:50.64	3.064	NL (Vito+13)
730	03:32:38.91 -27:57:00.48	0.298	NL
242	03:32:13.24 -27:42:40.96	0.605	NL

IDs reported in the spectral files we provide

All spectra and response matrices are provided

3. Analyse the data products: spectral fitting

Spectral analysis pipeline

- 1. Choose one of the four sources
- 2. Group the spectra (grppha) accordingly to the quality of the data
- 3. Load spectra in XSPEC
- 4. Define a spectral model and fit it to the data
- 5. Once a physically justified model is obtained, save the X-ray spectral parameters (including errors) and produce confidence contours
- Check for further components (to lower the data/model residuals) Return to point 3

PLAN (III)

OPTIONAL

a. Re-run the procedure for a second source, better if at a different redshift range.

Main publications

- Xue Y.Q. et al. 2011, ApJS, 195, 10 4 Ms Chandra source catalog.
- Vito F. et al. 2013, MNRAS, 428, 354 High-redshift AGN population in the CDF-S.
- Luo B. et al. 2017, ApJ Suppl., 228, 2 The Chandra Deep Field-South

Survey: 7 Ms Source Catalogs.

Command list: merge_obs

punlearn merge_obs pset merge_obs infiles=@infile.lis pset merge_obs outroot=CDFS_4obs pset merge_obs asolfiles=@asol.lis pset merge_obs badpixfiles=@bpix.lis pset merge_obs maskfiles=@mask.lis pset merge_obs parallel=yes pset merge_obs nproc=4 pset merge_obs units=time pset merge_obs bands=broad pset merge_obs xygrid=0.5:8192.5:1,0.5:8192.5:1 pset merge_obs psfecf=0.9 pset merge_obs psfmerge=exptime merge obs

Command list: wavdetect

punlearn wavdetect pset wavdetect infile=CDFS_4obs_merged_057keV_bin1.fits pset wavdetect outfile=CDFS_4obs_merged_057keV_wavdet_1em6_src.fits pset wavdetect scellfile=CDFS_4obs_merged_057keV_wavdet_1em6_cellimage.fits pset wavdetect imagefile=CDFS_4obs_merged_057keV_wavdet_1em6_reconstructed.fits pset wavdetect defnbkgfile=CDFS_4obs_merged_057keV_wavdet_1em6_normbakg.fits pset wavdetect regfile=CDFS_4obs_merged_057keV_wavdet_1em6.reg pset wavdetect ellsigma=3.0 pset wavdetect sigthresh=1e-6 pset wavdetect scales="1 1.4 2 2.8 4 5.6 8 11" pset wavdetect expfile=CDFS_4obs_merged_broad_thresh.expmap pset wavdetect psffile=CDFS_4obs_merged_broad_thresh.psfmap wavdetect clobber+ verbose=3