The Radio Galaxy Pictor A with XMM-Newton

Pictor A is a nearby (z=0.035) radio galaxy optically classified as Broad Line Radio Galaxy. It is an isolated source.

It is a double-lobed radio source with a FR II morphology

VLA map 20cm

XMM/pn image.

0.2-12 keV

Chandra

Analysis of the XMM-Newton Observation: nucleus and lobe

Observation: 2005 January 14

Exposure time: ~50 ksec

The analysis has to be performed using:

MOS1 (for the lobe)

MOS2 (for the nucleus).

- Superposition of the X-ray and radio images (DS9) to individuate the region to be analyzed
- Nucleus: extraction of the spectrum and production of the .rmf and .arf files (SAS). Pile-up check. Light curve; Spectral analysis with XSPEC. Definition of the best data model: parameter uncertainties, confidence (68%, 90%, 99%) contour plots, flux and luminosity.
- Lobe (east): extraction of the spectrum/spectra and production of the .rmf and .arf files (SAS). Spectral analysis with XSPEC. Definition of the best data model: parameter uncertainties, confidence (68%, 90%, 99%) contour plots, flux and luminosity
- OPTIONAL: Determination of the magnetic field in the (eastern) lobe

Calcolo del Campo Magnetico

Equipartition

$$W_{\text{total}} = G(\alpha)\eta L_{\nu}B^{-3/2} + V\frac{B^2}{2\mu_0}.$$

$$W_{\text{particles}} = G(\alpha) \eta L_{\nu} B^{-3/2},$$

Minimum Energy Requirements

The diagram shows the variation of the energies in particles and magnetic field as a function of B. There is a minimum total energy,

$$B_{\min} = \left[\frac{3\mu_0}{2} \frac{G(\alpha)\eta L_{\nu}}{V} \right]^{2/7}.$$

This magnetic field strength B_{min} corresponds to approximate equality of the energies in the relativistic particles and magnetic field. we find

$$W_{\text{mag}} = V \frac{B_{\text{min}}^2}{2\mu_0} = \frac{3}{4} W_{\text{partic}}$$

Thus, the condition for minimum energy requirements corresponds closely to the condition that there are equal energies in the relativistic particles and the magnetic field.

Radio flux:
$$L_{\sin} = V k_e C_{\sin} B^{\frac{p+1}{2}} v^{\frac{-(p-1)}{2}}$$

X-ray - Radio

Lobe Emission

$$N(E) = kE^{-p}$$
 $\alpha = \frac{p-1}{2}$

X-ray flux:

$$L_{IC} = Vk_e C_{IC} v^{\frac{-(p-1)}{2}}$$

$$B_{IC} = \left[\frac{F_{\sin}}{F_{IC}} \frac{C_{IC} (1+z)^{\alpha+3}}{C_{\sin}}\right]^{\frac{1}{\alpha+1}} \left(\frac{v_{\sin}}{v_{IC}}\right)^{\frac{\alpha}{\alpha+1}}$$

$$\alpha = \alpha_r = \alpha_x$$
, $V = volume$

Magnetic Field calculation no a priori assumption

$$B = [6.6 \times 10^{-40} (4800)^{-\alpha} (1+z)^{(3+\alpha)} F_R F_X^{-1} \nu_r^{\alpha} E_x^{-\alpha}]^{\frac{1}{1+\alpha}}$$

B [gauss]

$$F_R \propto \nu^{-\alpha}$$

 F_R is the flux density (in Jansky) at frequency ν_R (GHz)

 F_X is the flux density in erg cm^{-2} s⁻¹ Hz⁻¹ at E_x (keV)

References

Grandi et al. 2003:

http://adsabs.harvard.edu/abs/2003ApJ...586..123G

Perley et al 1997:

http://articles.adsabs.harvard.edu/full/1997A%26A...328...12P

Migliori et al . 2007:

http://adsabs.harvard.edu/abs/2007ApJ...668..203M

Miley 1980:

http://articles.adsabs.harvard.edu/full/1980ARA%26A..18..165M

Grandi et al. 2003 ApJ, 586, 123

Perley et al. 1997 A&A 328,12

Migliori et al. 2007, ApJ 668, 203

Miley G. 1980, ARAA, 18, 165