XSPEC Tutorial and Statistics Basic steps for X-ray spectral analysis

XSPEC Tutorial and Statistics Basic steps for X-ray spectral analysis

Where can I find *XSPEC*?

- XSPEC is part of the NASA HEASoft software suite (FTOOLS)
- The latest version is HEASoft 6.29c (Sept. 2021) xspec V12.12.0 https://heasarc.gsfc.nasa.gov/docs/software/heasoft/
- Supported architectures:
 - macOS/Mac OS X
 - PC Linux Ubuntu (or other Debian-based Linux)
 - PC Linux Fedora (or other RPM-based Linux)

XSPEC is a command-driven, interactive, X-ray spectral-fitting program, designed to be completely detector-independent

Alternatively: **Sherpa** https://cxc.cfa.harvard.edu/sherpa/

Step 1a: 'grouping' spectra

Once X-ray spectra are extracted and response matrices are produced, four files (fits format) are used within XSPEC

- source spectrum
- background spectrum
- ARF response matrix
- RMF response matrix

Before loading these files in XSPEC, it is better to:

- (1) associate a source spectrum with its background file and response matrices (RMF and ARF);
- (2) group the spectral counts using a binning of e.g. 25 counts/bin (depending on the source photon statistics and the 'sampling' of the instrument spectral resolution) and allow application of the χ^2 statistics (it is required to be in the Gaussian regime in each spectral bin). Alternatively, in low photon regime, use unbinned (or binned to 1 count/bin) data and Cash statistics

grppha pn.pi pn_25.grp comm="group min 25 & chkey BACKFILE back_spectrum.fits & chkey ANCRFILE pn.arf & chkey RESPFILE pn.rmf & exit"

i.e.: grppha input_spectrum output_spectrum [...]

Name all of the files properly!

Step 1b: loading data in XSPEC and "setup" commands

xspec

xspec> data pn_25.grp
xspec> ignore bad
xspec> ignore **-0.3 7.2-**

xspec> cpd /xw
xspec> plot ldata

load the grouped spectrum (produced in step 1a) ignore spectral bins flagged as bad

ignore spectral bins below 0.3 keV and above 7.2 keV (to be verified, i.e., adapted to your specific data, src. vs. bkg intensity)

to change the plotting device (e.g., on screen, on PS file) plot the data in log scale

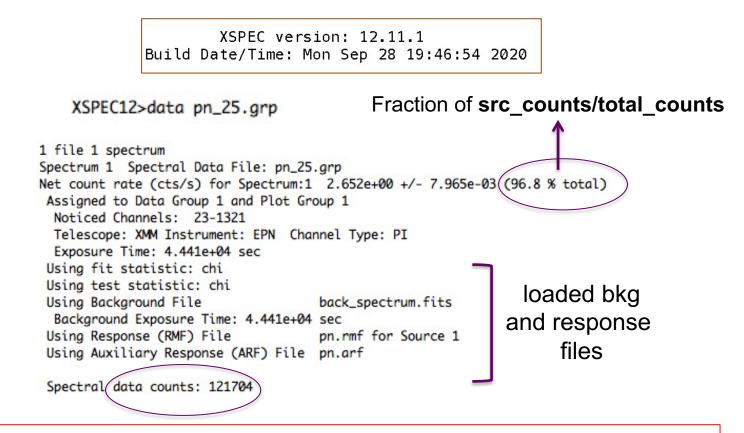
Energy: with "." Otherwise: interpreted as channels (conversion made via the RMF)

Loading multiple datasets

In case of multiple datasets (adopting the same model)

xspec> data 1:1 pn_25.grp 2:2 mos1_25.grp 3:3 mos2_25.grp load all datasets at the same time

xspec> ignore 1-3:**-0.3 7.2-**


select the proper energy range for all datasets (1-3)

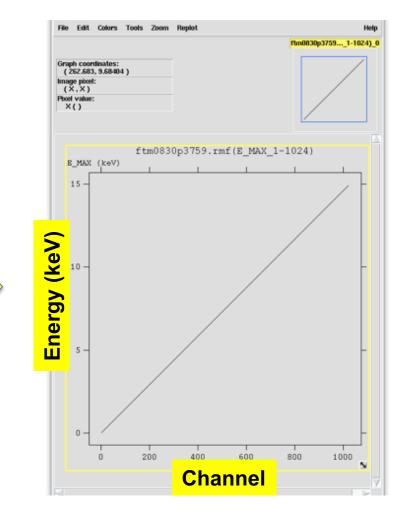
xspec> cpd /xw
xspec> plot ldata

When **multiple datasets** are used, remember to place in front of all models the **constant model** [e.g., mo **cons**(pha*po+...)] to account for cross-calibration uncertainties among different instruments of the same telescope/different telescopes and some possible source flux variability in case of multiple observations not taken simultaneously.

The first constant should be fixed to 1, the others are left free to vary (i.e., are part of the fitting)

xspec> show all

Source net (i.e. background-subtracted) **counts** = data counts × fraction = =121704 × 0.968

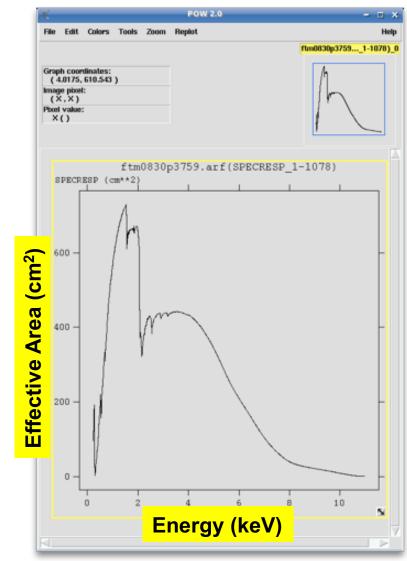

Possible binning choices:

- have enough counts (e.g., 20-25) in each bin and then apply the χ^2 statistics;
- one count/bin and apply the Cash statistics (C-stat, named W-stat if background is subtracted);
- 'sampling' the spectral resolution of the data

Response matrices: RMF

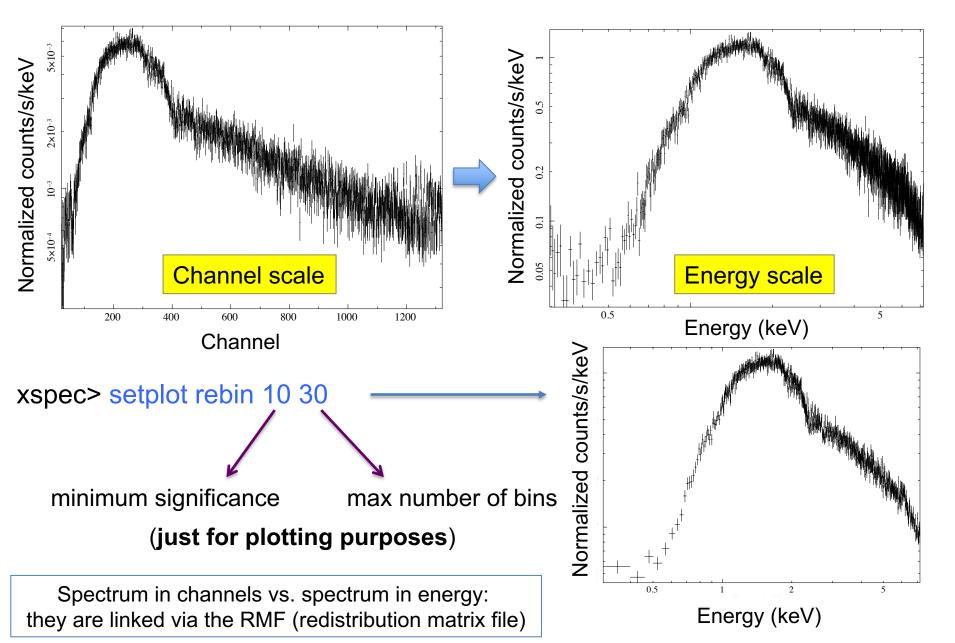
RMF: links the instrumental channel scale with the physical energy (wavelength) scale

Select All Invert	CHANNEL 1E channel Modify	E_MIN 1E keV Modify	E_MAX 1E keV Modify	
1	1.000000E+00	1.460000E-03	1.460000E-02	٦ŀ
2	2.000000E+00	1.460000E-02	2.920000E-02	
3	3.000000E+00	2.920000E-02	4.380000E-02	
4	4.000000E+00	4.380000E-02	5.840000E-02	
5	5.000000E+00	5.840000E-02	7.300000E-02	
6	6.000000E+00	7.300000E-02	8.760000E-02	
7	7.000000E+00	8.760000E-02	1.022000E-01	
8	8.000000E+00	1.022000E-01	1.168000E-01	
9	9.000000E+00	1.168000E-01	1.314000E-01	
10	1.000000E+01	1.314000E-01	1.460000E-01	
11	1.100000E+01	1.460000E-01	1.606000E-01	
12	1.200000E+01	1.606000E-01	1.752000E-01	
13	1.300000E+01	1.752000E-01	1.898000E-01	
14	1.400000E+01	1.898000E-01	2.044000E-01	
15	1.500000E+01	2.044000E-01	2.190000E-01	
16	1.600000E+01	2.190000E-01	2.336000E-01	
17	1.700000E+01	2.336000E-01	2.482000E-01	
18	1.800000E+01	2.482000E-01	2.628000E-01	
19	1.900000E+01	2.628000E-01	2.774000E-01	
20	2.000000E+01	2.774000E-01	2.920000E-01	



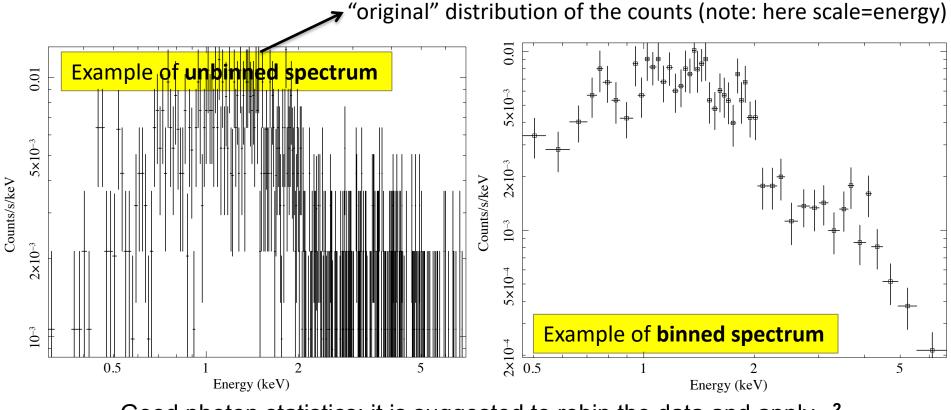
Visualization of the RMF file using the **ftool** fv

Response matrices: ARF


ARF: indicates the effective response (hence sensitivity) of the mirrors+instrument at a given source position on the detector

🗙 fv: Bir	ary Table of ft	m0830p3759.ar	f[1] in /ho 😑 👔	x c
File Edit	Tools			Help
Select	ENERG_LO	ENERG_HI	SPECRESP	
All	keV	keV	cm**2	
Invert	Modify	Modify	Modify	
1	2.200000E-01	2.300000E-01	9.414584E+01	TΔ
2	2.300000E-01	2.400000E-01	1.119709E+02	10
3	2.400000E-01	2.500000E-01	1.309653E+02	1
4	2.500000E-01	2.600000E-01	1.518642E+02	1
5	2.600000E-01	2.700000E-01	1.716482E+02	1
6	2.700000E-01	2.800000E-01	1.922011E+02	1
7	2.800000E-01	2.900000E-01	4.741680E+01	
8	2.900000E-01	3.000000E-01	2.284590E+00	
9	3.000000E-01	3.100000E-01	5.144246E+00	
10	3.100000E-01	3.200000E-01	1.563580E+01	
11	3.200000E-01	3.300000E-01	2.251595E+01	
12	3.300000E-01	3.400000E-01	3.011008E+01	
13	3.400000E-01	3.500000E-01	3.743014E+01	
14	3.500000E-01	3.600000E-01	4.385400E+01	
15	3.600000E-01	3.700000E-01	4.954287E+01	
16	3.700000E-01	3.800000E-01	5.625348E+01	
17	3.800000E-01	3.900000E-01	6.431229E+01	
18	3.900000E-01	4.000000E-01	7.319862E+01	
19	4.00000E-01	4.100000E-01	7.713167E+01	
20	4.100000E-01	4.200000E-01	8.444775E+01	
Go to:	Edit	cell: 0.42		217
				_

xspec> setplot energy


Channel scale = instrument scale Energy scale = "physical" scale

What does 'binning' (grouping) mean?

To apply the χ^2 test, we need that in every bin the statistics is nearly in the Gaussian regime, i.e., there is a sufficiently high number of counts

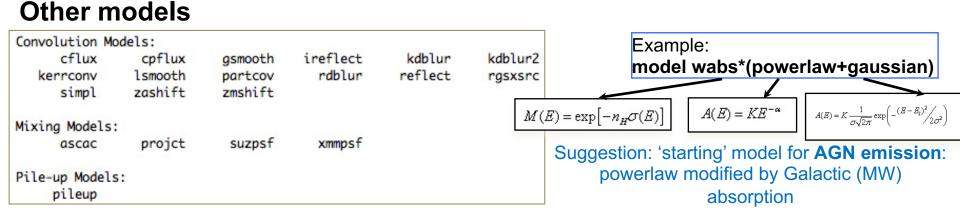
Using the ftool *grppha* (or similar) we can require that each spectral bin contains at least a given number of counts (see step 1a)

Good photon statistics: it is suggested to rebin the data and apply χ^2

Step 2: choice of the models

XSPEC models like math operations

Additive models


agauss	apec	bapec	bbody	bbodyrad	bexrav	_
bexriv	bkn2pow	bknpower	bmc	bremss	bvapec	
byvapec	c6mekl	c6pmekl	c6pvmkl	c6vmekl	cemekl	
cevmkl	cflow	compLS	compPS	compST	COMPTT	
compbb	compmag	comptb	compth	cplinear	cutoffpl	
disk	diskbb	diskir	diskline	diskm	disko	
diskpbb	diskpn	eplogpar	eqpair	eqtherm	equil	
expdec	ezdiskbb	gadem	gaussian	gnei	grad	
grbm	kerrbb	kerrd	kerrdisk	laor	laor2	
logpar	lorentz	meka	mekal	mkcflow	nei	
npshock	nsa	nsagrav	nsatmos	nsmax	nsmaxg	
nsx	nteea	nthComp	optxagn	optxagnf	pegpwrlw	
pexmon	pexrav	pexriv	plcabs	posm	powerlaw	
pshock	raymond	redge	refsch	rnei	sedov	
sirf	smaug	srcut	sresc	step	vapec	
vbremss	vequil	vgadem	vgnei	vmcflow	vmeka	
vmekal	vnei	vnpshock	vpshock	vraymond	vrnei	
vsedov	vvapec	vvgnei	vvnei	vvnpshock	vvpshock	
vvrnei	vvsedov	zagauss	zbbody	zbremss	zgauss	
zpowerlw						

Multiplicative models

SSS_ice	TBabs	TBgrain	TBvarabs	absori	acisabs
cabs	constant	cyclabs	dust	edge	expabs
expfac	gabs	heilin	highecut	hrefl	lyman
notch	pcfabs	phabs	plabs	pwab	recorn
redden	smedge	spexpcut	spline	swind1	uvred
varabs	vphabs	wabs	wndabs	xion	zTBabs
zbabs	zdust	zedge	zhighect	zigm	zpcfabs
zphabs	zredden	zsmdust	zvarabs	zvfeabs	zvphabs
zwabs	zwndabs	zxipcf			

Syntax: M1*M2*(A1+A2+M3*A3)

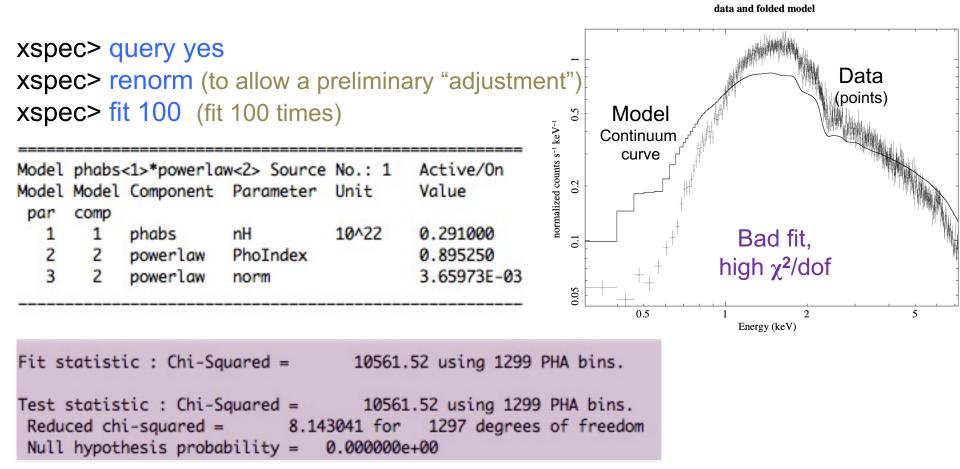
M=multiplicative model: modifies incident flux **A=additive model**: source of emission

Step 3a: model fit and best-fitting solution

Absorption due to our Galaxy (MW): you need to **include it in all spectral models**. All photons pass through our own Galaxy

xspec> nh

XSPEC12>nh Equinox (d/f 2000)[2000] RA in hh mm ss.s or degrees[159.386] 04 18 21.3 DEC in dd mm ss.s or degrees[56.171] 38 01 36 >> Leiden/Argentine/Bonn (LAB) Survey of Galactic HI LII , BII 161.675682 -8.819546 Requested position at X and Y pixel 22.78 103.39 Search nH in 4 X 4 box Each pixel is 0.675 deg 0.675 deg nH calculated using all points within 1.0000 deg from input position RA DEC Dist nH 64.1051 37.3970 0.7360 2.65E+21 65.1324 37.3425 0.8071 2.80E+21 64.3226 37.9446 0.2251 2.93E+21 63,5005 38,5376 0,9979 3.00E+21 65.3701 37.8774 0.6333 2.89E+21 64.5573 38.4821 0.4561 3.09E+21 65.6250 38.4019 0.8984 2.84E+21 64.8094 39.0092 0.9978 2.99E+21 LAB >> Average nH (cm**-2) 2.90E+21 LAB >> Weighted average nH (cm**-2) 2.91E+21 /usr/local/heasoft-6.16/x86_64-apple-darwin10.8.0/bin/nh


Alternatively (web tool): <u>https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3nh/w3nh.pl</u> based on the HI4PI Survey (N.B. Bekhti et al. 2016, A&A, 594, A116)

xspec> mo pha*po

pha: accounts for the Galactic N_H (multiplicative model) **po**: powerlaw model (additive model) for the primary AGN comp.

It is possible to provide values to the parameters at every step of the fitting process

XSP	EC12>mo	pha*po			frozen param f <i>reeze</i> # of th		`		0	
		1	, delta, mir 0.001(0.01)	top, and max va Ø	lues f 0			1e+06	
		2.91e-1 -1	0.01(0.01)	-3	-2		9	10	
		PhoIndex>1 1		0.01)	0	0		1e+20	1e+24	
3:p	owerlaw:	norm>1e-6								
			aw<2> Source		1 Active/On					
		Component	Parameter	Unit	Value					
pa		1000		10100	0.001000	6				
	1 1 2 2	phabs	nH	10^22		froze				
	2 2	powerlaw powerlaw	PhoIndex norm		1.80000 1.00000E-06	+/-+/-	0.0			
	5 2	powertuw	norm		1.000001-00	T/ -	0.0			
parame	ter	number of								
number		componen								

dof=degrees of freedom=(*number of datapoints – number of free parameters*)= =1299-2=1297

 χ^2 /dof close to unity means that it is a good fit (hence, not in this case!) – see lesson on statistics

<u>Null hypothesis</u> probability=probability that the model is a good representation of the datapoints (i.e., good if close to 1)

All the adopted models should be physically motivated according to the known source properties/classification + indications obtained at other wavelengths

Step 3b: adding components and fit

xspec> addcomp 2 zpha adding zpha as # component (#=order in the model)

XSPEC12>addcomp 2 zpha

Input parameter value, delta, min, bot, top, and max values for ... 0.001(0.01) 0 100000 1e+06 1 0 2:zphabs:nH>1 -0.01(0.01) -0.999 -0.999 10 10 3:zphabs:Redshift>.048

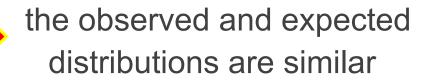
xspec> fit 100

Model	phabs	<1>*zphabs<	2>*powerlaw	<3> Sour	ce No.: 1 Ac	tive/On
Model	Model	Component	Parameter	Unit	Value	
par	comp					
1	1	phabs	nH	10^22	0.291000	frozen
2	2	zphabs	nH	10^22	1.00000	+/- 0.0
3	2	zphabs	Redshift		4.80000E-02	frozen
4	3	powerlaw	PhoIndex		0.895250	+/- 4.39599E-03
5	3	powerlaw	norm		3.65973E-03	+/- 1.85394E-05

delchi: (model-data), i.e. deviations in units of σ

Step 4: χ^2 statistical test

Test to compare the observed distribution of the results with that expected


$$\chi^2 = \sum_{k=1}^n \frac{(O_k - E_k)}{\sigma_k^2}^2$$

O_k=observed values (spectral datapoints)

E_k=expected values (model)

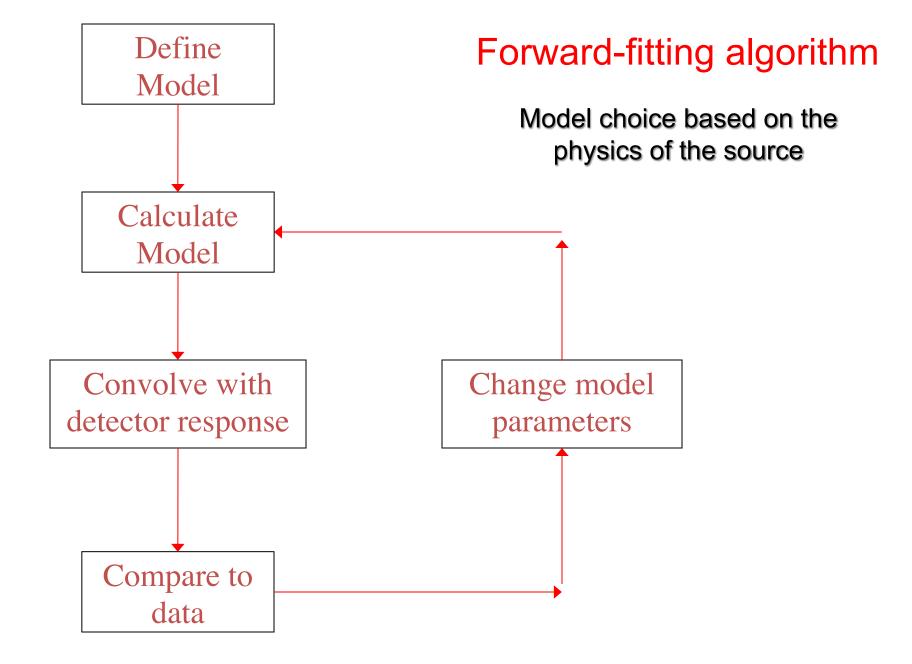
 σ_k =error on the measured values (error on each spectral bin) k=number of datapoints (bins after rebinning)

$$\chi^2 / dof \approx 1$$

Applicability of χ^2 statistics

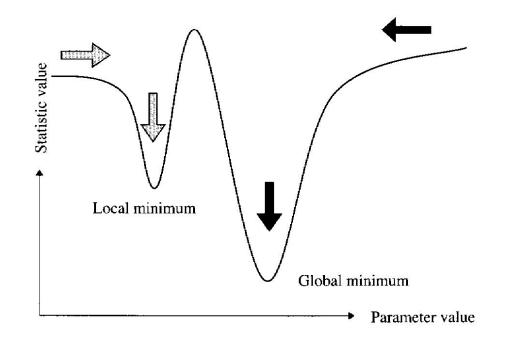
$$S = \sum_{i} \left(\frac{S_i - B_i t_s / t_b}{O_K} - \frac{m_i t_s}{E_K} \right)^2 / \left(\frac{(\sigma_s)_i^2 + (\sigma_b)_i^2}{\sigma_K} \right)^2$$

 x^2 atotictic


where $S_i = \text{src counts in the } I=\{1,...,N\}$ data bins with exposure t_S , $B_i = \text{background counts with exposure } t_B$ and $m_i = \text{model predicted count rate}$; $(\sigma_S)^2$ and $(\sigma_B)^2 = \text{variance on the src and background counts}$, typically estimated by S_i and B_i

BUT the χ^2 statistic fails in low-counting regime (few counts in each data bin)

Alternative solutions in case of low photon statistics


- i. To rebin the data so that each bin contains a large enough number of counts
- BUT: loss of information and dependence on the rebinning method adopted
- ii. To modify S so the it performs better in low-count regime (e.g., by estimating the variance for a given data bin using the average counts from the surrounding bins; Churazov+96)
- BUT: it would need Montecarlo simulations to properly support the result
- iii. To construct a **maximum-likelihood estimator** based on the Poisson distribution of the detected counts (Cash79; Wachter+79). ML means finding the best fit of parameters that maximizes the Poisson likelihood

xspec> statistic chi (default) Binned data, χ² statistics ⇔ Gaussian statistics xspec> statistic cstat Unbinned data, C-statistics ⇔ Poisson statistics

Global vs. local minimum

Data analysis

If the fit process is started at the "right place", then it will converge to the true minimum

The more complicated the model and the more highly correlated the parameters, then the more likely that the algorithm will hardly find the true minimum

xspec> newpar 2 1.8

to assign a new value to a parameter (2 here) Useful also to 'move' the fit from a local minimum...

χ^2 in a nutshell

Reduced χ^2 large $\leftarrow \rightarrow P(\chi^2)$ small

- a. Errors are under-estimated
- b. The model does not describe the data correctly

Reduced χ^2 small $\leftarrow \rightarrow P(\chi^2)$ large

- c. Errors are over-estimated
- d. Were data "selected" in a particular way?

Step 5: error estimate

							$\Delta \chi^2$ as	s a Functio	on of Cont	fidence Lev	el and Deg	grees of Fr	eedom
xspe	ec> e	rror #									ν		
•			or constant)				p	1	2	3	4	5	6
(#=ni	umpe	r or the pa	arameter)				68.3%	1.00	2.30	3.53	4.72	5.89	7.04
							90%	2.71	4.61	6.25	7.78	9.24	10.6
							95.4%	4.00	6.17	8.02	9.70	11.3	12.8
							99%	6.63	9.21	11.3	13.3	15.1	16.8
Model	phabs	<1>*zphabs<	2>*powerlaw	<3> Sour	ce No.: 1	Active	99.73%	9.00	11.8	14.2	16.3	18.2	20.1
	•		Parameter		Value		99.99%	15.1	18.4	21.1	23.5	25.7	27.8
par	comp									Avni76	6; Lan	npton	+76
1	1	phabs	nH	10^22	0.291000	froz	zen				,	1	
2	2	zphabs	nH	10^22	0.465420	+/-	6.995	25E-03	T	hese	are th	e erro	ors
3	2	zphabs	Redshift		4.80000E-	02 froz	zen			at 1	lσ for	that	
4	3	powerlaw	PhoIndex		1.59881	+/-	9.358	98E-03		na	arame	oter	
5	3	powerlaw	norm		9.98424E-	03 +/-	1.1942	25E-04		pc			

Using energies from responses.

Fit statistic : Chi-Squared = 1286.80 using 1299 PHA bins.

Test statistic : Chi-Squared = 1286.80 using 1299 PHA bins. Reduced chi-squared = 0.992903 for 1296 degrees of freedom Null hypothesis probability = 5.667071e-01 Weighting method: standard XSPEC12>error 4 Parameter Confidence Range (2.706) 4 1.58343 1.6143 (-0.0153884,0.0154818) for c

2.706: 90% confidence level for one parameter of interest

- Ex.1: Error at 90% confidence level for one parameter of interest: xspec> error 2.71 #param
- Ex. 2: Error at 90% confidence level for two parameters of interest: xspec> error 4.61 #param
- Ex. 3: Error at 99% confidence level for one parameter of interest: xspec> error 6.63 #param

Confidence	sigma	delta_chi-square	1 parameter of interest
68.3%	1.0	1.00	
90.0%	1.6	2.71	
95.5%	2.0	4.00	
99.0%	2.6	6.63	
99.7%	3.0	9.00	

1

1 parameter of interest: as only one parameter at each time would vary

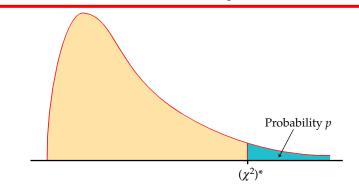
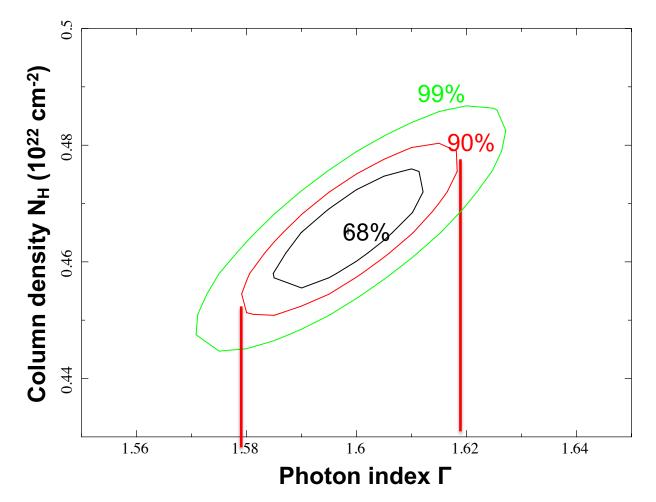


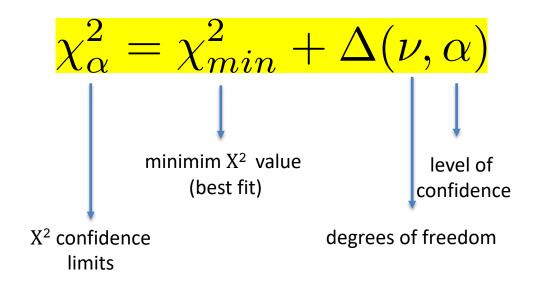
Table entry for p is the critical value $(\chi^2)^*$ with probability p lying to its right.


	TABLE F χ^2 distribution critical values												
							Tail prob	ability p					
	df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005
Parameters of interest	1 2 3 4 5 1	1.32 2.77 4.11 5.39 6.63	1.64 3.22 4.64 5.99 7.29	2.07 3.79 5.32 6.74 8.12	2.71 4.61 6.25 7.78 9.24	3.84 5.99 7.81 9.49 11.07	5.02 7.38 9.35 11.14 12.83	5.41 7.82 9.84 11.67 13.39	6.63 9.21 11.34 13.28 15.09	7.88 10.60 12.84 14.86 16.75	9.14 11.98 14.32 16.42 18.39	10.83 13.82 16.27 18.47 20.51	12.12 15.20 17.73 20.00 22.11

Step 5a: contour plots

xspec> steppar par1 min_value max_value #steps par2 min max #steps

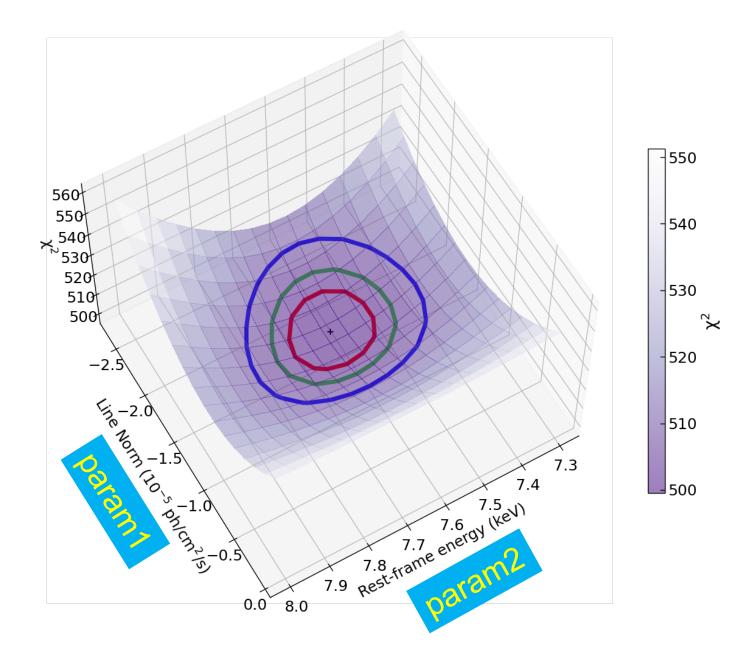
Perform a fit while stepping the value of a parameter through a given range XSPEC12 stepp 4 1.55 1.65 10 2 0.43 0.50 10 Parameters involved in the fit Chi-Squared Delta PhoIndex nH 2 Chi-Squared 1317 30.234 0.43 0 1.55 0 It provides how one parameter 26.991 1313.8 1 1.56 0 0.43 1317.3 2 1.57 varies wrt. another parameter 30.457 0 0.43 1327.4 3 1.58 40.613 0 0.43 (i.e., the error range for sets of 4 57.438 0 0.43 1344.2 1.59 5 0 parameters) 1367.7 80.908 1.6 0.43 6 0 1397.8 111 1.61 0.43 7 0 147.68 1.62 0.43 1434.5 Useful also to understand whether 8 0 1477.7 190.92 1.63 0.43 9 0 240.68 1.64 0.43 1527.5 two spectral parameters are 10 0 1583.7 296.94 1.65 0.43 correlated (not necessarily from a 1 1527.3 240.45 10 1.65 0.437 physical point of view) 1476.6 189.75 9 1.64 1 0.437 1432.3 145.51 8 1.63 1 0.437 7 1394.6 107.76 1.62 1 0.437 1363.3 76.53 6 1.61 1 0.437 1338.7 51.852 5 1.6 1 0.437 1320.6 33.752 4 1.59 1 0.437 1309.1 22.255 3 1.58 1 0.437 1304.2 17.383 2 1.57 1 0.437 1306 19,155 1 1.56 1 0.437


xspec> plot contour

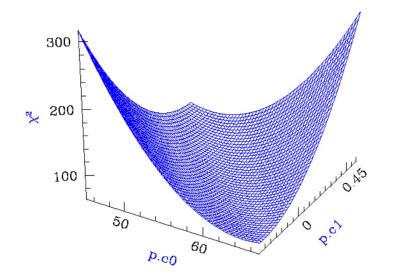
90% c.l.: the photon index varies in the range 1.58–1.62 (vs. 1.58–1.61 using the *error* command). Slight differences are explained because in the case of the *error* command, the uncertainty was computed for one parameter of interest

The meaning of contour plots/confidence regions

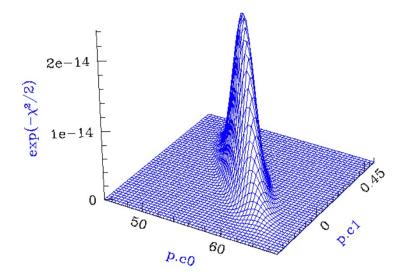
The contour plots define a confidence region in the parameter space (i.e., the "statistical surface") within which the true parameters lie with a certain confidence (hence, 68, 90, 99% in XSPEC by default). They represent regions of constant probability



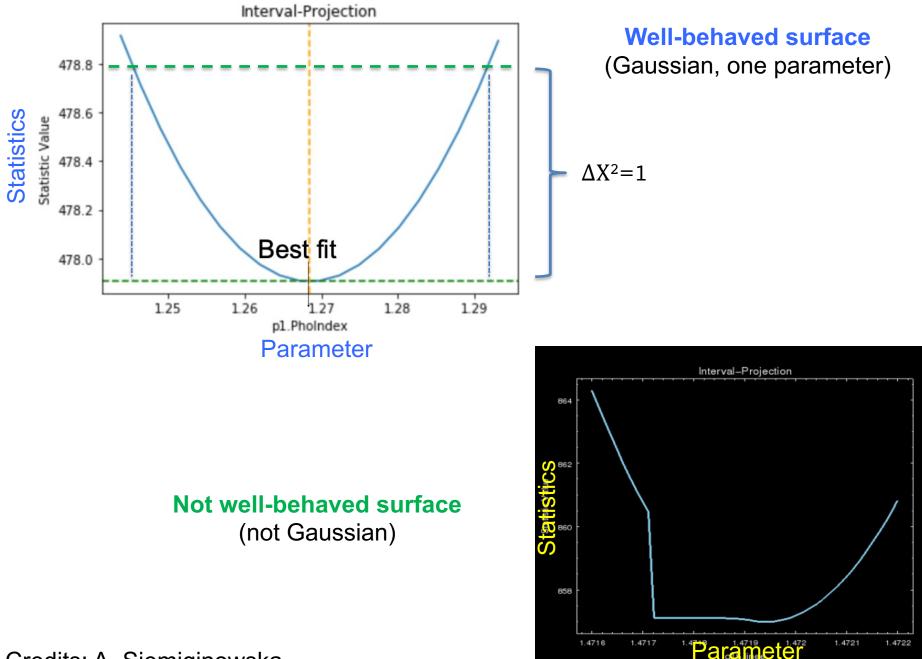
Avni 1976


 Δ depends only on the number of parameters involved in the fit (see previous slides)

CONSTANTS FOR CALCULATING CONFIDENCE REGIONS


	q (No. of Interesting Parameters)							
(%)	1	2	3					
68	1.00	2.30	3.50					
90	2.71	4.61	6.25					
99	6.63	9.21	11.30					

Courtesy of E. Bertola



Calculating Confidence Limits means Exploring the Parameter Space - Statistical Surface

Example of a "well-behaved" statistical surface in parameter space, viewed as a multi-dimensional paraboloid (χ^2 , top), and as a multi-dimensional Gaussian (exp(- χ^2 /2) ≈ L, bottom).

Credits: A. Siemiginowska

Credits: A. Siemiginowska

Step 6: source flux and luminosity

xspec> flux 2 10 xspec> lum 2 10 0.048 (lum band redshift)

(flux band in keV)

command *cosmo* to change the cosmology

```
XSPEC12>flux 2 10
Model Flux 0.0062186 photons (4.5024e-11 ergs/cm^2/s) range (2.0000 - 10.000 keV)
XSPEC12>ne 2 Ø
Fit statistic : Chi-Squared = 144391.0 using 1299 PHA bins.
Test statistic : Chi-Squared = 144391.0 using 1299 PHA bins.
Reduced chi-squared = 111.4128 for 1296 degrees of freedom
Null hypothesis probability = 0.000000e+00
Current data and model not fit yet.
XSPEC12>lum 2 10 0.048
Model Luminosity 2.4791e+44 ergs/s (2.0000 - 10.000 keV rest frame)
    (z = 0.0480 H0 = 70.0 q0 = 0.00 Lambda0 = 0.730)
```

Flux is observed (typically, no correction for absorption) and in the observed-frame band (units: erg/cm²/s)

Luminosity needs to be *intrinsic/de-absorbed* (so, put $N_H = 0$ and do **not** fit again) and is reported in the source rest frame (units: erg/s)

Uncertainties on fluxes and luminosities. I

xspec> flux 2 10 error 100 90 (100 trials to compute the error at 90% c.l. in the 2–10 keV band)

XSPEC12>flux 2 10 error 100 90
Parameter distribution is derived from fit covariance matrix.
Model Flux 0.0061987 photons (4.4751e-11 ergs/cm^2/s) range (2.0000 - 10.000 keV)
Error range 0.006159 - 0.006249 (4.441e-11 - 4.517e-11) (90.00% confidence)

xspec> lum 2 10 0.048 error 100 90 (the same as for the flux)

XSPEC12>lum 2 10 0.048 error 100 90
Parameter distribution is derived from fit covariance matrix.
Model Luminosity 2.3811e+44 ergs/s (2.0000 - 10.000 keV rest frame)
 Error range 2.359e+44 - 2.396e+44 (90.00% confidence)
 (z = 0.0480 H0 = 70.0 g0 = 0.00 Lambda0 = 0.730)

Uncertainties on fluxes and luminosities. II

Alternatively: use **cflux** and **clumin** as multiplicative model components. **cflux** (**clumin**) in front of model component(s). At least one of the additive models should have the normalization fixed to a non-zero value. cflux/clumin must be treated as the other model components (i.e., they are part of the fit)

xspec> model pha*cflux*zpha*pow

xspec> [...]; fit

			==================== 2>*zphabs<3> Parameter		w<4> Source No Value	.: 1 Active/On	
par 1 2 3 4 5 6 7 8	comp 1 2 2 3 3 4 4	phabs cflux cflux cflux zphabs zphabs powerlaw powerlaw	nH Emin Emax lg10Flux nH Redshift PhoIndex norm	10^22 keV keV cgs 10^22	0.291000 2.00000 10.0000 -10.3374 0.507589 4.80000E-02 1.61125 1.01795E-02	frozen frozen +/- 2.36218E-03 +/- 7.23604E-03 frozen +/- 9.39481E-03 frozen	Boundaries for the computation Emin=2 keV Emax=10 keV Ig10Flux is the log of the flux in the observed energy range Emin-Emax The powerlaw normalization has been frozen

Fit statistic : Chi-Squared

1290.08

using 1299 bins.

Test statistic : Chi-Squared 1290.08 using 1299 bins. Null hypothesis probability of 5.41e-01 with 1296 degrees of freedom XSPEC12>error 4 Parameter Confidence Range (2.706) 4 -10.3414 -10.3335 (-0.00394489,0.00392021)

Uncertainties on fluxes and luminosities. III

For what concerns the X-ray luminosity, it must be computed as *intrinsic* (*de-absorbed*). This can be achieved placing the column density **=0** without subsequent fitting the spectrum. For the value+error, **clumin** can be used (with no 'extra' requirements):

xspec> model pha*zpha*clumin*pow xspec> [...]; fit

Model M		•	======================== 2>*clumin<3 Parameter		======================================	o.: 1 Active/Or	= 1
1 2 3 4 5 6 7 8 9	1 2 3 3 3 4 4	phabs zphabs clumin clumin clumin clumin powerlaw powerlaw	nH nH Redshift Emin Emax Redshift lg10Lum PhoIndex norm	10^22 10^22 keV keV cgs	0.291000 0.507588 4.80000E-02 2.00000 10.0000 4.80000E-02 44.4067 1.61125 1.03806E-02	frozen +/- 7.23591E-03 frozen frozen frozen +/- 1.80573E-03 +/- 9.39481E-03 frozen	Boundaries for the computation Emin=2 keV Emax=10 keV Ig10Lum is the log of the luminosity in the rest-frame energy range Emin=Emax

Fit statistic : Chi-Squared 1290.08 using 1299 bins. Test statistic : Chi-Squared 1290.08 using 1299 bins. Null hypothesis probability of 5.41e-01 with 1296 degrees of freedom XSPEC12>error 7 Parameter Confidence Range (2.706) 7 44.4032 44.4102 (-0.00353496,0.00351265)

Step 7: the F-test

(here applied to estimate the statistical significance of the inclusion of an emission line)

Model 1: absorbed powerlaw Model 2: absorbed powerlaw + iron emission line xspec> addcomp 3 zgauss XSPEC12>addcomp 3 zgauss xspec> fit 100

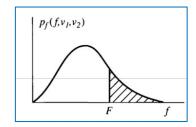
 $\Delta \chi^2 / \Delta dof = 33.5/2$

χ²/dof=1253.3/1294 vs. 1286.8/1296 (no line)

		6.5	0.05(0.065)		0	0	1e+0	6	1e+06
4:zg	auss:Li	neE>6.4								
			0.05(0.001)		0	0	1	0	20
5:zg	auss:Si	gma>.01 -1						1.12		
C			0.01(0.01)	-0.9	99	-0.999	1	0	10
6:zg	auss:Re	dshift>.048	0.01(0.01)		0	0	1e+2	0	1e+24
7.70	auss:no		0.01(0.01)		0	0	16+2	.0	16+74
Fit :	statist	ic : Chi-Sq	uared =	1	284.34 us	ing 12	299 PHA bir	IS.		
						-				
odel	nhahs		2>(200)	100.3	+ 0000			No .	1	Active/
		<1>*zphabs					-	e No.:	1	Active/
odel	Model	<1>*zphabs Component				rlaw< Val	-	e No.:	1	Active/
odel par	Model comp	Component	Param	eter	Unit	Val	ue			Active/
odel par 1	Model comp 1	Component phabs	Paramontante Pa Antitattante Paramontante Pa	eter	Unit 10^22	Val 0.2	ue 91000	froze	en	
odel par 1 2	Model comp 1 2	Component phabs zphabs	nH nH	eter	Unit	Val 0.2 0.4	ue 91000 70750	froze +/-	en 7.093	Active/0 342E-03
odel par 1 2 3	Model comp 1 2 2	Component phabs zphabs zphabs	nH nH Redsh	eter ift	Unit 10^22 10^22	Val 0.2 0.4 4.8	ue 91000 70750 0000E-02	froze +/- froze	en 7.093 en	342E-03
odel par 1 2 3 4	Model comp 1 2 2 3	Component phabs zphabs zphabs zgauss	nH nH Redsh LineE	eter ift	Unit 10^22 10^22 keV	Val 0.2 0.4 4.8 6.4	ue 91000 70750 0000E-02 0830	froze +/- froze +/-	en 7.093 en 2.188	
odel par 1 2 3 4 5	Model comp 1 2 2 3 3	Component phabs zphabs zphabs	nH nH Redsh LineE Sigma	eter ift	Unit 10^22 10^22	Val 0.2 0.4 4.8 6.4 1.0	ue 91000 70750 0000E-02 0830 0000E-02	froze +/- froze +/- froze	en 7.093 en 2.188	342E-03
odel par 1 2 3 4 5 6	Model comp 1 2 2 3 3 3 3	Component phabs zphabs zphabs zgauss	nH nH Redsh LineE	eter ift	Unit 10^22 10^22 keV	Val 0.2 0.4 4.8 6.4 1.0	ue 91000 70750 0000E-02 0830	froze +/- froze +/- froze	en 7.093 en 2.188	342E-03
odel par 1 2 3 4 5	Model comp 1 2 2 3 3	Component phabs zphabs zphabs zgauss zgauss	nH nH Redsh LineE Sigma	eter ift	Unit 10^22 10^22 keV	Val 0.2 0.4 4.8 6.4 1.0 4.8	ue 91000 70750 0000E-02 0830 0000E-02	froze +/- froze +/- froze froze	en 7.093 en 2.188 en	342E-03
odel par 1 2 3 4 5 6	Model comp 1 2 2 3 3 3 3	Component phabs zphabs zphabs zgauss zgauss zgauss zgauss	nH nH Redsh LineE Sigma Redsh norm	eter ift ift	Unit 10^22 10^22 keV	Val 0.2 0.4 4.8 6.4 1.0 4.8 2.6	ue 91000 70750 0000E-02 0830 0000E-02 0000E-02	froze +/- froze +/- froze froze +/-	en 7.093 en 2.188 en 4.589	342E-03 809E-02

Fit statistic : Chi-Squared =

1253.29 using 1299 PHA bins.


Test statistic : Chi-Sauared = 1253.29 using 1299 PHA bins. Reduced chi-sauared = 0.968541 for 1294 degrees of freedom Null hypothesis probability = 7.868667e-01

xspec> ftest chi2_mod2 dof_mod2 chi2_mod1 dof_mod1

→ Low F value: low statistical significance of the added component

```
xspec> ftest 1253.3 1294 1286.8 1296
```

XSPEC12>ftest 1253.3 1294 1286.8 1296 F statistic value = 17.2939 and probability 3.87222e-08

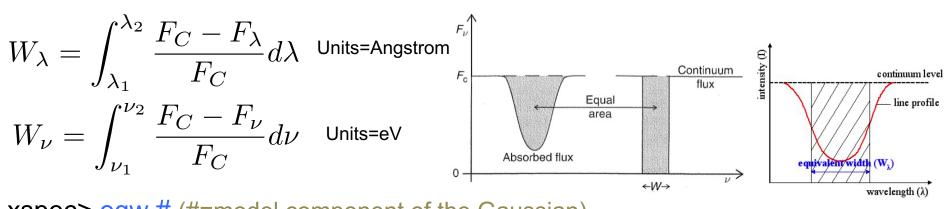
Large F value → low probability (of exceeding that value, see tables)
→ highly significant improvement due to the additional component

Use the F-test to evaluate the improvement to a spectral fit due to the assumption of a different model, with additional terms Conditions:

(a) the simpler model is nested within the more complex model;

(b) the extra parameters have Gaussian distribution (not truncated by the parameter space boundaries) – BUT see also Protassov+02 on caveats

$$P_f(f;v_1,v_2) = \frac{\chi_1^2 / v_1}{\chi_2^2 / v_2}$$


 $\propto \Delta \chi^2 / k$

The larger this ratio, the larger the improvement in the spectral fitting

k=number of additional parameters

Uncertainties on the line EW measurement. I

Wavelength/frequency space definition [Angstrom/keV units] EW is a measure of how prominent a line is (F_{λ}, F_{ν}) wrt. the continuum (F_{c})

xspec> eqw # (#=model component of the Gaussian)
xspec> eqw # error 100 90 (EW including errors at 90% c.l.)

Alternatively: assuming that the dominant contribution to the EW error comes from the line intensity (so, limited contribution from the uncertainty on the continuum emission), one can (1) compute the 90% error on the line normalization, (2) place the upper 90% value as line normalization and (3) type *eqw* again (without fitting), then (4) place the lower 90% value as line normalization and (5) type *eqw* again (without fitting)

Uncertainties on the line EW measurement. II

=====						=======================================	===	
Model	phabs	<1>*zphabs	<2>(powerlaw	√<3> + zg	auss<4>) Sourc		ive/On	
		Component	Parameter	Unit	Value			
par 1	comp 1	phabs	nH	10^22	0.291000	frozen		
2	2	zphabs	nH	10 22	0.513229	+/- 7.33688E-	-03	
3	2	zphabs	Redshift	10 22	4.80000E-02	·	00	
4	3	powerlaw	PhoIndex		1.62435	+/- 9.70444E-	-03	
5	3	powerlaw	norm		1.03048E-02	+/- 1.25935E-	-04	
6		zgauss	LineE	keV	6.40857	+/- 2.12948E-	-02	
7	4	- 3	Sigma	keV	1.00000E-02			
8	4 4	zgauss zgauss	Redshift norm		4.80000E-02	+/- 4.59249E-	06	
					2.731082-05	+/- 4.39249L-		
2010/07							2	
Fit s	tatist	ic : Chi-	Squared		1254.73	using 1299 bi	ins.	
		tic : Chi- hesis prob		7.78e-01	1254.73 with 1294 degu	using 1299 bi rees of freedom	ins.	
XSPEC1	2>eqw	4						
Data d	roup n	umber: 1						
			dth for Comp	oonent 4:	0.0477921 ke\	1		
		4 err 100 9						
Data -		umbaras 1						easiest method (lower/upper 90% c.l. values)
		umber: 1 up equiv wi	dth for Com	nonent 4.	0.0477921 keV	1		
					evariance matr			
			e: 0.0368183	3 - 0.0605	5744 keV			
	2> <mark>erro</mark>		D					
		<u>Contidence</u> 559e-05 3.	Range (2.70		2e-06,7.54694e	-06)		
		1.97559e-0		(,,	20 00,7.540540			
				\backslash				
Fit st	atisti	.c : Chi-So	luared		1257.64 u	ising 1299 bins.		
Test s	tatist	ic : Chi-So	uared		1257.64 u	ising 1299 bins.		
Null	hypoth	esis probab	ility of 7.0	61e-01 wi	h 1294 degrees	offreedom		
Curre	nt dat	a and model	. not fit yet	t. 🔪				
Data d	roup p	umber: 1						
			dth for Com	oonent 4:	0.0345677 ke\	1		* "approximated" method (using the errors on
XSPEC1	2>ne 9	3.48608e-0)5;eqw 4			•		
								the line normalization only)
Fit st	atisti	.c : Chi-So	luared		1257.64 u	ising 1299 bins.		• /
		ic : Chi-So				ising 1299 bins.		
					h 1294 degrees	s of freedom		
Curre	nt dat	a and model	. not fit ye	t.				
Data d	roup n	umber: 1						
Additi	ve gro	up equiv wi	dth for Comp	oonent 4:	0.0609973 ke\	1		
	_•					-		

Step 8: save data+model and 'recover' all in XSPEC later

To save the current data + model you may use the command

xspec> save all zpha_po_zgauss
xspec> [...]

A file zpha_po_zgauss.xcm is saved

To recover the settings + data + model later, you can use the command

xspec> @zpha_po_zgauss.xcm
xspec> fit

XSPEC will ask you to fit the data again

Possibly useful commands

in XSPEC

- > setplot rebin #1 #2 (to rebin the data; #1 indicates the number of σ)
- show all
- show files
- show notice
- script filename [save all the commands in a file (filename here; default: xspec.xcm]
- save model bestmodel.xcm (save only the best fit model, without the data)

In IPLOT (plotting environment for XSPEC)

xspec> iplot

- time off (to remove the date in the bottom-right part of the plot)
- csize 2 (character size)
- msize (marker size)
- label top (title of the plot)
- label filename (title of the file)
- hardcopy nomefile.ps/cps (save a figure)
- plot
- wen nomefile [writes two files (.qdp and .pco), one with data and the other with plot settings]