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Cosmic ray driven instabilities
Electron acceleration at shocks
Supernova remnant simulations

Particle acceleration: an extreme multi-scale problem

SNR CasA

supernova remnant:

rSNR ∼ 3 pc ∼ 1× 1019 cm,

plasma skin depth:

λi =
c
ωi
∼ 2×107

( n
1 cm−3

)−1/2
cm
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Cosmic ray scattering with background plasma

extrinsic confinement: scattering off of turbulence injected on the driving
scale and cascaded to smaller scales
⇒ important for confinement of TeV CRs

intrinsic confinement: CRs drive unstable plasma wave modes (e.g.,
Alfvén waves), and then scatter off of them
⇒ most important mechanism for GeV CR confinement

dispersion relation (Ωe,0 = −mi/me × Ωi,0, α = ncr/ni): gyrotropic
CR ion + electron beam propagates in background plasma
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CR driven instabilities – growth rates

Shalaby, Thomas, CP (2021)

gyro-resonant instability of gyrotropic CR population
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CR driven intermediate-scale instability

Shalaby, Thomas, CP (2021)

low CR drift speed: two instability peaks
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CR driven intermediate-scale instability

Shalaby, Thomas, CP (2021)

for CR drift speed vdr ≈
√

mi
me

vA
2 : two instability peaks merge
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CR driven intermediate-scale instability
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for vdr >
√

mi
me

vA
2 : intermediate-scale instability quenched
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Cosmic ray driven instabilities
Growth of the intermediate-scale and the gyro-resonant instability

Shalaby, Thomas, CP (2021)
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CR driven instabilities: magnetic field growth
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t ∼ ta: fast magnetic field amplification at scales < di

t ∼ tc: instability starts to grow on larger, gyro-resonant scale di
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CR driven instabilities: momentum distribution
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electromagnetic wave with vph interacting with particle of velocity (vx , vy , vz):

K̇‖ =
m
2

dv2
x

dt
= qvx (vy Bz − vzBy )

K̇⊥ =
m
2

dv2
⊥

dt
= −q [(vx − vph)vy Bz − (vx − vph)vzBy ]

t ∼ ta : vx ≈ vph ⇒ K̇⊥ ≈ 0 : parallel scattering only
t ∼ tc : vph ≈ 0 ⇒ K̇⊥ ≈ −K̇‖ : energy-conserving scattering
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Regimes of CR driven instabilities

Intermediate -scale

wave modes

gyroscale

wave modes

gyroscale

wave modes

gyroscale

wave modes

gyroscale

wave modes
Bell wave modes

small-scale

wave modes

Shalaby, Thomas, CP (2021)

where α = ncr
ni

is the CR number fraction, mr = mi
me

is the mass ratio,
and γi is the Lorentz factor of CR ions
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The intermediate-scale instability
Properties of the intermediate-scale instability:

growth rate Γinter � Γgyro and excites broad spectral support

unstable modes are background ion-cyclotron waves in the
comoving CR frame

condition for growth: vdr

vA
<

1
2

√
mi

me

Possible implications of this new instability:

enables electron heating at shocks and injection into diffusive
shock acceleration

couples CRs more tightly to background plasma and
strengthens CR feedback in galaxies and galaxy clusters

slows down CR escape from the sites of particle acceleration
→ brighter gamma-ray halos
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Electron acceleration at non-relativistic shocks

electron injection problem:

gyro-radii: re = me
mi

ri ⇒ electrons do random walk through the shock
transition; no coherent electrostatic shock potential

intermediate-scale instability provides large-amplitude magnetic
fluctuations at sub ion-gyroscale⇒ a solution? PIC simulations
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Shalaby, Lemmerz, Thomas, CP (2022):
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Shock physics: magnetic amplification
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The problem
Electron acceleration
Intermediate-scale instability at shocks

Particle acceleration at a non-relativistic shock
The intermediate-scale and the gyro-resonant instabilities mediate particle scattering

Shalaby, Lemmerz, Thomas, CP (2022)
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The problem
Electron acceleration
Intermediate-scale instability at shocks

Shock acceleration: intermediate-scale instability
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Shock acceleration efficiency: Kei

10
-2

10
-1

10
0

10
1

10
2

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

rest-frame momentum distribution
of ions and electrons

analytical Maxwell-Jüttner
distribution normalized to um, for
which u4f (u) is maximum

non-thermal electron-to-ion energy:

Kei =
Ee(u > 5ue

m)

Ei(u > 5u i
m)

100 200 300 400 500 600 700

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Shalaby, Lemmerz, Thomas, CP (2022)

downstream evolution of Kei

(non-thermal ion distribution
still growing)

Ms and vsh identical for all
runs, onlyMA differs

presence of intermediate-
scale instability increases
Kei by more than 100!
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The problem
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Shock dissipation: electron and ion temperatures

Shalaby, Lemmerz, Thomas, CP (2022)

time evolution of downstream Ti

(dashed) and Te (solid)

runs with mi/me = 1836
have different efficiencies
Kei but same temperatures

Ti equilibrates to MHD value
(deviations due to CR and
magnetic energies)

Te ≈ 0.4Ti (1D vs. 3D or
missing instabilities?)

true mi/me required for
correct heating physics
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The problem
Electron acceleration
Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks
Intermediate-scale instability at shocks:

provides efficient pre-acceleration that scatters and accelerates
electrons on scales much shorter than the ion gyro radius

instability drives comoving ion-cyclotron waves (with the upstream
plasma) at the shock front

condition for growth: vsh

vA,0
<

1
4

√
mi

me
, for n = 4n0

Electron shock acceleration and heating:

intermediate-scale instability increases electron acceleration efficiency
(by factor > 100)

ion thermalization in line with MHD (accounting for EB and ECR), but
Te ≈ 0.4Ti remains open question

reduced mi/me suppresses intermediate instability, precludes electron
acceleration, results in erroneous electron and ion heating
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Global MHD simulations of SNRs with CR physics

Mach number finder with CRs

CP+ (2017)

detect and characterize shocks
and jump conditions on the fly

measure Mach numberM and
magnetic obliquity θB

inject and transport CR protons
⇒ dynamical back reaction on
gas flow, hadronic emission

inject and transport CR
electrons

calculate non-thermal radio,
X-ray, γ-ray emission
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Winner, CP+ (2019, 2020)
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Hadronic TeV γ rays: SN 1006
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Hadronic TeV γ rays: Vela Jr. and RXJ 1713
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TeV γ rays from shell-type supernova remnants
Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior
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⇒ Correlation structure of patchy TeV γ-rays constrains magnetic
coherence scale in ISM:

SN 1006: λB > 200+80
−10 pc Vela Junior: λB = 13+13

−4.3 pc
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CREST - Cosmic Ray Electron Spectra evolved in Time
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thermal spectrum
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CREST code (Winner, CP+ 2019)

post-processing MHD simulations

on Lagrangian particles

adiabatic processes
Coulomb and radiative
losses
Fermi-I (re-)acceleration
Fermi-II reacceleration
secondary electrons

Link to observations

radio synchrotron

inverse Compton (IC) γ-ray
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Sedov–Taylor blast wave: spectral evolution
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E0 = 1051 erg, ngas = 1 cm−3, T0 = 104 K, B = 1 µG
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SN 1006: CR electron acceleration models
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different obliquity dependent electron acceleration efficiencies:
1. preferred quasi-perpendicular acceleration (previous PIC)
2. constant acceleration efficiency (a straw man’s model)
3. preferred quasi-parallel acceleration (like CR protons)
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CR electron acceleration: quasi-perpendicular shocks
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CR electron acceleration: constant efficiency
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CR electron acceleration: quasi-parallel shocks
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SN 1006: multi-frequency spectrum
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quasi-parallel acceleration model fits multi-frequency spectrum

GeV regime: leptonic inverse Compton dominates

TeV regime: hadronic pion decay

Christoph Pfrommer Particle acceleration at non-relativistic shocks



Cosmic ray driven instabilities
Electron acceleration at shocks
Supernova remnant simulations

MHD setup
Protons and hadronic emission
Electrons and leptonic emission

SN 1006: multi-frequency spectrum

10−6 10−3 100 103 106 109 1012

E (eV)

10−14

10−13

10−12

10−11

10−10

10−9

10−8

E
2

d
Φ
/
d
E

(e
rg

s−
1

cm
−

2
)

total spectrum

hadr. γ-ray

lept. γ-ray (IC)

109 1010 1011 1012 1013

E (eV)

10−14

10−13

10−12

10−11

E
2

d
Φ
/
d
E

(e
rg

s−
1

cm
−

2
)

total γ-ray

hadr. γ-ray

lept. γ-ray (IC)

IC (CMB)

IC (IR)

IC (stars)

Winner, CP+ (2020)

quasi-parallel acceleration model fits multi-frequency spectrum
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Conclusions for CR hydrodynamics at SNRs

CR hydrodynamics with kinetic plasma physics:

Shock finder enables CR acceleration in MHD simulations

CR proton transport in MHD enables dynamic backreaction

CR electron spectral transport (CREST): multi-frequency spectra
and emission maps

CR acceleration constraints by MHD models:

TeV shell-type SNRs probe magnetic coherence scale in ISM

hybrid-PIC simulations of p+ acceleration agree with global SNR
simulations

global SNR simulations imply preferred quasi-parallel e−

acceleration: new intermediate instability enables e−

(pre-)acceleration
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PICOGAL: From Plasma KInetics to COsmological GALaxy Formation
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