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Particle acceleration: an extreme multi-scale problem

SNR CasA *

supernova remnant:

IsNR ~3pc~1x 10"° cm,
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Particle acceleration: an extreme multi-scale problem
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Particle acceleration: an extreme multi-scale problem
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supernova remnant: plasma skin depth:

c n —1/2
19 o -~ 7 SN
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= need to develop a multi-scale approach: PIC and MHD models! AIP
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Cosmic ray driven instabilities Introduction
Intermediate instability
Overview and applications

Cosmic ray scattering with background plasma

@ exirinsic confinement: scattering off of turbulence injected on the driving
scale and cascaded to smaller scales
= important for confinement of TeV CRs

=

AIP
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Overview and applications

Cosmic ray scattering with background plasma

@ exirinsic confinement: scattering off of turbulence injected on the driving
scale and cascaded to smaller scales
= important for confinement of TeV CRs

o CRs drive unstable plasma wave modes (e.g.,
Alfvén waves), and then scatter off of them

=

AIP
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Cosmic ray driven instabilities Introduction
Intermediate instability
Overview and applications

Cosmic ray scattering with background plasma

@ exirinsic confinement: scattering off of turbulence injected on the driving
scale and cascaded to smaller scales
= important for confinement of TeV CRs

o CRs drive unstable plasma wave modes (e.g.,
Alfvén waves), and then scatter off of them

@ dispersion relation (Qe,0 = —mi/Me x Qi o, o« = Ner/ 1): gyrotropic
CRion + electron beam propagates in background plasma
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Cosmic ray driven instabilities Introduction
Intermediate instability
Overview and applications

CR driven instabilities — growth rates

k(vgy —va) = O

Gyroscale
instability
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k C/ Wi Shalaby, Thomas, CP (2021) E

@ gyro-resonant instability of gyrotropic CR population AIP
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CR driven instabilities — growth rates

Gyroscale
instability

0.1 p 10 100 1000
k C/ Wi Shalaby, Thomas, CP (2021) E

@ gyro-resonant instability of gyrotropic CR population AIP
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CR driven instabilities — growth rates

Gyroscale
instability

0.1 1 10 100 1000
ke/w;

Shalaby, Thomas, CP (2021) ™

@ new intermediate-scale instability of gyrotropic CR population ~41p-
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Cosmic ray driven instabilities Introduction
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Overview and applications

CR driven instabilities — growth rates

12f kvar = [Qe|
10p
w gl Intermediate—
\E\ scale
Y instability Small-
Gyroscale scale
4 instability instability |
2.
0 L n . L
0.1 1 10 100 1000
kc/ Wi Shalaby, Thomas, CP (2021) ™

@ new intermediate-scale instability of gyrotropic CR population ~41p-
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Cosmic ray driven instabilities Introduction
Intermediate instability
Overview and applications

CR driven intermediate-scale instability

20 Var/va = 15.
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kc/wi Shalaby, Thomas, CP (2021) E
@ low CR drift speed: two instability peaks TAIP
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Cosmic ray driven instabilities Introduction
Intermediate instability
Overview and applications

CR driven intermediate-scale instability
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@ for CR drift speed vy ~ / %%: two instability peaks merge AIP

Christoph Pfrommer Particle acceleration at non-relativistic shocks



Cosmic ray driven instabilities Introduction
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Overview and applications

CR driven intermediate-scale instability
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@ for vy > /i *A: intermediate-scale instability quenched AP
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Cosmic ray driven instabilities Introduction
Intermediate instability

Overview and applications

Cosmic ray driven instabilities

Growth of the intermediate-scale and the gyro-resonant instability

CRs: logiof(py, p1)
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Cosmic ray driven instabilities Introduction
Intermediate instability
Overview and applications

CR driven instabilities: magnetic field growth
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Cosmic ray driven instabilities

Introduction
Intermediate instability
Overview and applications

CR driven instabilities: magnetic field growth
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@ { ~ t,: fast magnetic field amplification at scales < d _E

AIP
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CR driven instabilities: magnetic field growth
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@ t ~ ty: fast magnetic field amplification at scales < d

I}
@ [ ~ t;: instability starts to grow on larger, gyro-resonant scale d o
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Cosmic ray driven instabilities Introduction
Intermediate instability
Overview and applications

CR driven instabilities: momentum distribution

CRions: logyof (v, v.)

Shalaby, Thomas, CP (2021)
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Cosmic ray driven instabilities Introduction
Intermediate instability
Overview and applications

CR driven instabilities: momentum distribution

CRions: logyof (v, v.)

Shalaby, Thomas, CP (2021)

0.1

electromagnetic wave with vy, interacting with particle of velocity (vx, vy, vz):

) m dv?

K= 2 g = awwB:— By

. m dv?

Kl = —2 T;‘ = 7q[(VX7Vph)Vszf(VX7Vph)VZBy]
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Cosmic ray driven instabilities Introduction
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CR driven instabilities: momentum distribution

CRions: logyof (v, v.)

Shalaby, Thomas, CP (2021)

0.1

electromagnetic wave with vy, interacting with particle of velocity (vx, vy, vz):

- m dv?
Ky = 5 d; = qwx(vyBz — vzBy)
. m dv3
K. = ETtL = —q[(vx — von) Bz — (Vx — pn)Vz5y] —
@ finbk: WAV = K ~O0: parallel scattering only g
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CR driven instabilities: momentum distribution

Shalaby, Thomas, CP (2021)

0.1

electromagnetic wave with vy, interacting with particle of velocity (vx, vy, vz):

- m dv?
Ky = 5 d; = qwx(vyBz — vzBy)
. m dv3
Ko = ETtL = —=q[(vx = Vpn)Vy Bz — (Vx — Vpn)VzBy] —
@ finbk: WAV = K ~O0: parallel scattering only
@t~t: wn~0 = K, ~—K;: -energy-conservingscattering A"
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Cosmic ray driven instabilities Introduction
Intermediate instability

Overview and applications

Regimes of CR driven instabilities

Intermediate -scale gyroscale small-scale

wave modes wave modes

wave modes

V1 > Vary/ /2

gyroscale gyroscale
Bell wave modes

wave modes wave modes

Vm/2 (3%2&2/16)_%

v, =0

Var/va
Shalaby, Thomas, CP (2021) E

@ where a = 7t is the CR number fraction, m = 77 is the mass ratio,

and ~; is the Lorentz factor of CR ions AIP

lativistic shocks
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Cosmic ray driven instabilities Introduction
Intermediate instability
Overview and applications

The intermediate-scale instability

Properties of the intermediate-scale instability:
@ growth rate lMper > gyro @and excites broad spectral support

@ unstable modes are in the
comoving CR frame
. . Vdr 1 m;
@ condition for growth: — < =y —
Va 2\ me

=

AIP
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Cosmic ray driven instabilities Introduction
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The intermediate-scale instability

Properties of the intermediate-scale instability:
@ growth rate lMper > gyro @and excites broad spectral support

@ unstable modes are in the
comoving CR frame
. . Vdr 1 m;
@ condition for growth: — < =y —
Va 2\ me

Possible implications of this new instability:

@ enables electron heating at shocks and injection into diffusive
shock acceleration

@ couples CRs more tightly to background plasma and
strengthens CR feedback in galaxies and galaxy clusters

=

@ slows down CR escape from the sites of particle acceleration
— brighter gamma-ray halos AIP
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The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

electron injection problem:

@ gyro-radii: ro = %? r, = electrons do random walk through the shock

transition; no coherent electrostatic shock potential

=

AIP
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The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

electron injection problem:

@ gyro-radii: ro = %? r, = electrons do random walk through the shock

transition; no coherent electrostatic shock potential

@ intermediate-scale instability provides large-amplitude magnetic
fluctuations at sub ion-gyroscale

=

AIP
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The problem

Electron acceleration at shocks Electron acceleration

Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

electron injection problem:
@ gyro-radii: ro = %? r, = electrons do random walk through the shock
transition; no coherent electrostatic shock potential

@ intermediate-scale instability provides large-amplitude magnetic
fluctuations at sub ion-gyroscale = a solution? PIC simulations

v,
5 Un

| 3
! Shock
T; ! 7): front
B ! £ <
o :> 0
E shock 2| 4no, 2M4 5 ng, Ma
g f ti kS )
‘ormation
e\ | <z S| v
&l no, vu | & |Downstream Upstream
—— ! ——
By By

Shalaby, Lemmerz, Thomas, CP (2022):
quasi-parallel, non-relativistic shock with PIC code SHARP

=
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The problem

Electron acceleration at shocks Electron acceleration

Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

electron injection problem:
@ gyro-radii: ro = %? r, = electrons do random walk through the shock
transition; no coherent electrostatic shock potential

@ intermediate-scale instability provides large-amplitude magnetic
fluctuations at sub ion-gyroscale = a solution? PIC simulations
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Shalaby, Lemmerz, Thomas, CP (2022): Ma S/ 4\ Me E
quasi-parallel, non-relativistic shock with PIC code SHARP
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The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock physics: magnetic amplification
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The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Particle acceleration at a non-relativistic shock

The intermediate-scale and the gyro-resonant instabilities mediate particle scattering

Downstream region Shock Front Shock Precursor
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!
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AIP
x(c/wpi) Shalaby, Lemmerz, Thomas, CP (2022)
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The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock acceleration: intermediate-scale instability

-0.08|
-0.10,

5 10 15
kefw;

@ solution of dispersion relation
at shock front (in the contact
discontinuity rest frame)

=

AIP
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The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock acceleration: intermediate-scale instability

,m, = 1836
0.8 ,m, = 100
,m, = 1836 =
- 0.6 =
= 04 <
0.2 ﬂ
1 [h‘/ 107t :a; Z o1 m,
E 1072
1078
5 10 15 0 2 4 6 8 10 12 14
kefw; ke/w
Shalaby, Lemmerz, Thomas, CP (2022)
@ solution of dispersion relation @ only red simulation, which
at shock front (in the contact grows intermediate-scale
discontinuity rest frame) instability, accelerates electrons E

and amplifies magnetic field
AIP
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The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock acceleration efficiency: K

107!

= 107
=

ulc

@ rest-frame momentum distribution
of ions and electrons

@ analytical Maxwell-Juttner
distribution normalized to um, for
which u*f(u) is maximum

=

AIP
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The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock acceleration efficiency: K

= 107
=

ulc

@ rest-frame momentum distribution
of ions and electrons

@ analytical Maxwell-Juttner
distribution normalized to um, for
which u*f(u) is maximum

@ non-thermal electron-to-ion energy:

Ee.(u > 5uy)
Ei(u > 5um) AlP

=

Kei =

Particle acceleratio elativistic shocks



The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock acceleration efficiency: K

u' f(u)

10" — My = 5.3,m, = 1836
0 —My= 53,m, =
0 e~ e = 1508
107
;<5 107
107
107
107"} ﬂ
100 200 300 400 500 600 700
ule ¢
Shalaby, Lemmerz, Thomas, CP (2022)
@ rest-frame momentum distribution @ downstream evolution of Ky
of ions and electrons (non-thermal ion distribution
@ analytical Maxwell-Jiittner still growing)
distribution normalized to um, for @ M; and vy, identical for all
which u“f(u) is maximum runs, only Ma differs
@ non-thermal electron-to-ion energy:
° ’ I
K. — Ee(u> 5um) -
ei E(u> 5uy) AIP

Particle accelerati lativistic shocks



The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock acceleration efficiency: K

u' f(u)

ulc

@ rest-frame momentum distribution
of ions and electrons

@ analytical Maxwell-Juttner
distribution normalized to um, for
which u*f(u) is maximum

@ non-thermal electron-to-ion energy:

Ee.(u > 5uy)

Kizi.
® " E(u>5uh)

K

10" — My = 5.3,m, = 1836

o — Ma = 53,m, =100
— My =213, m, = 1836

107

107

107

107

107} ﬂ

100 200 300 400 500 600 700

t
Shalaby, Lemmerz, Thomas, CP (2022)

@ downstream evolution of Ky
(non-thermal ion distribution
still growing)

@ M, and v identical for all
runs, only Ma differs

@ presence of intermediate-
scale instability increases
Ksi by more than 100!

Particle acceleratio elativistic shocks

a

AIP




The problem

Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock dissipation: electron and ion temperatures

Downstream
2 ‘“*7—:—:::::‘—: —————————————
N L
<
£ o ] woeees Typap My = 1836
E . rm Taup. 1, = 100
202
25 — My = 53,m, = 1836
- = 100
20 . = 1836
K 15
~
& 10
05
0.0
100 200 300 400 500 600

tQ;
Shalaby, Lemmerz, Thomas, CP (2022)

@ time evolution of downstream T;
(dashed) and T (solid) T

=
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The problem

Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock dissipation: electron and ion temperatures

Downstream
o @ runs with mi/me = 1836

% ! have different efficiencies
& | m, = 1836
Sos (I T e 2 100 Ke but same temperatures
202

25 — My= 53.m, = 1836

= 100

20 . = 1836
= 15
=
& 10

05

00 100 200 300 400 500 600

tQ;
Shalaby, Lemmerz, Thomas, CP (2022)

@ time evolution of downstream T;
(dashed) and T (solid) T

=
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The problem

Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Shock dissipation: electron and ion temperatures

Downstream
e @ runs with mi/me = 1836

2 =TT . .« . .
v ; have different efficiencies
g I m, = 1836
Sos | e 00 Ke but same temperatures
202 )

(deviations due to CR and

25 — Ma— 53,m, — 1836 magnetic energies)

20 — My = ) 53 m, = 10‘0'
- — M, =213, m, = 1836 ° Te ~ O47‘| (1 D VS. 3D or

15 . . . apege
> missing instabilities?)

1.0

05

0.0

100 200 300 400 500 600
tQ
Shalaby, Lemmerz, Thomas, CP (2022)
. . A
@ time evolution of downstream T; E
(dashed) and T (solid) AP

Particle acceleratio elativistic shocks



Electron acceleration at shocks

The problem
Electron acceleration
Intermediate-scale instability at shocks

Shock dissipation: electron and ion temperatures

/T,

Downstream
2 ‘“*7—:—:::::‘—: —————————————
1 1
I T — 1836
woreees Typs My = 1836
05 . Tatip, my = 100
0.2
25 — My = 53,m, = 1836
20 — My = 5.3,m, =100
’ — My =21.3,m, = 1836
15
1.0
05
0.0
100 200 300 400 500 600

tQ;
Shalaby, Lemmerz, Thomas, CP (2022)

@ time evolution of downstream T;
(dashed) and T (solid)

runs with m;/me = 1836
have different efficiencies
Kei but same temperatures

(deviations due to CR and
magnetic energies)

Te =~ 0.4T; (1D vs. 3D or
missing instabilities?)

true m;/me required for
correct heating physics

a

AIP

elativistic shocks

Particle acceleratio



The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

Intermediate-scale instability at shocks:

@ provides efficient pre-acceleration that scatters and accelerates
electrons on scales much shorter than the ion gyro radius

o (with the upstream
plasma) at the shock front
@ condition for growth: “&h 1 ™ for n=4n,
Va0 4 Mme

=

AIP
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The problem
Electron acceleration at shocks Electron acceleration
Intermediate-scale instability at shocks

Electron acceleration at non-relativistic shocks

Intermediate-scale instability at shocks:

@ provides efficient pre-acceleration that scatters and accelerates
electrons on scales much shorter than the ion gyro radius

o (with the upstream
plasma) at the shock front
Vsh 1 m;

@ condition for growth: =X <« — /=21 for n=4n,
Va0 4 Mme

Electron shock acceleration and heating:

@ intermediate-scale instability increases electron acceleration efficiency
(by factor > 100)

@ ion thermalization in line with MHD (accounting for Eg and Ecg), but
Te =~ 0.4T; remains open question

=

@ reduced mi/me suppresses intermediate instability, precludes electron
acceleration, results in erroneous electron and ion heating AIP

Christoph Pfrommer Particle acceleration at non-relativistic shocks



MHD setup
Protons and hadronic emission

Supernova remnant simulations Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

@ detect and characterize shocks
and jump conditions on the fly

Mach number finder with CRs

CP+ (2017)

=

AIP
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MHD setup
Protons and hadronic emission
Supernova remnant simulations Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

11 @ detect and characterize shocks

%= —— simulated . .
os] T === theorical and jump conditions on the fly
%
08 h o M=10
07 S MIH @ measure and
§0,6
Sos
0.4
0.3
0.2
0.1
0.0 ——— b
0 10 20 30 40 50 60 70 80

6 (deg)

obliquity-dep. acceleration efficiency

Pais, CP+ (2018) based on
hybrid PIC sim.s by Caprioli & Spitkovsky (2015)

=

AIP

Particle acceleratio elativistic shocks



MHD setup
Protons and hadronic emission
Supernova remnant simulations Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

x10~1%

@ detect and characterize shocks
and jump conditions on the fly

>

RX J1713 (sim.)

—39°20"

@ measure and

'S

—39°40"

w

@ inject and transport CR protons
= dynamical back reaction on
gas flow, hadronic emission

—40°00"

N

S0 [ph cm arcmin~? 5]

—40°20'

0
17h 16m 17h 14m 17h 12m 17h 10m

RA (hours)

simulated TeV gamma-ray map
Pais & CP (2020)

=

AIP
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MHD setup
Protons and hadronic emission

Supernova remnant simulations Electrons and leptonic emission

Global MHD simulations of SNRs with CR physics

@ detect and characterize shocks

o | totalray IC (CMB) and jump conditions on the fly
& — = hadr. y-ray -+ IC (IR)
g -+ lept. y-ray (IC) -+ IC (stars) @ measure and
‘; 10-12
S 10 @ inject and transport CR protons
% = dynamical back reaction on

rota e : LI gas flow, hadronic emission

10° 1010 101! 1012 1013
£ @ inject and transport CR

) electrons
simulated gamma-ray spectrum
@ calculate non-thermal radio,

X-ray, ~v-ray emission _E

Winner, CP+ (2019, 2020)

AIP
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MHD setup
Protons and hadronic emission
Supernova remnant simulations Electrons and leptonic emission

Hadronic TeV ~ rays: SN 1006

c10-15 observation sim. 5p/p =0, 0 = 10°
—a1.50

~42.00

226.25 .00 22575 .00 25

RA (hours)

x10~15
3.0 3.0
— ) = 0°
° — = 10°
0=20°} 0 o
— = 30° — = 30°
L b 2o
7 - 1
7\ y ,’ A i
4 \ 1o 2 7t o 2
[\ 2 1 I‘ 2
% i ! 2
Fos = Fos <
g
' ©
4 ) : \
v
T T 0.0 T T T 0.0
00 02 04 06 08 10 12 14 0 90 180 270 360
v/ (ra) 0 [deg]

Pais & CP (2020)




MHD setup
Protons and hadronic emission
Supernova remnant simulations Electrons and leptonic emission

Hadronic TeV ~ rays: SN 1006

observation sim. 6p/p =0, 6 = 10°

4150
42.00
25
226.25 .00 22575 .00 25 22625 .00 22575 .00 25
RA (hours) RA (hours)
x10-15 x10-15
5.0 0
[E——— —_=0°
—_=10° - —_—=10° =
0=20} 251 0=20° 251
— 0 = 30° o —_— 6 = 30° o
) |
F2o £
H
7 1 Fisa
A k A j
A \ d "
A 1
1 o
\
’ 2
/ o5
Py \
’ \
v 4
T — 0.0 T T T 0.0
00 02 04 06 08 10 12 14 0 90 180 270 360

r/(rs) 6 [deg] AIP
Pais & CP (2020)




Supernova remnant simulations

IHD setup
Protons and hadronic emission
Electrons and leptonic emission

Hadronic TeV ~ rays: Vela Jr. and RXJ 1713

15°00"
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TeV ~ rays from shell-type supernova remna

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior
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TeV ~ rays from shell-type supernova remnants

Varying magnetic coherence scale in simulations of SN 1006 and Vela Junior

A = 100 pe

Dec [deg] A = 50 pe
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0.0
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Pais, CP+ (2020)
= Correlation structure of patchy TeV ~-rays constrains magnetic

coherence scale in ISM:
SN 1006: A\g > 200739 pc Vela Junior: \g = 13733, pc AIP
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CREST - Cosmic Ray Electron Spectra evolved in Time

*~ CREST code (Winner, CP+ 2019)

@ post-processing MHD simulations

o g,

@ on Lagrangian particles

mesh poin‘t\‘vp

e adiabatic processes

@ Coulomb and radiative
losses

o Fermi-| (re-)acceleration
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2 10
l’ﬁ" tion dominated . .
w107 e | LINK t0 Observations
10710 + .
@ radio synchrotron E
T T Y R R

normalized momentum p = P/(mec) ° Inverse Compton (IC) "}/'ray AIP




MHD setup
Protons and hadronic emission
Supernova remnant simulations Electrons and leptonic emission

Sedov—Taylor blast wave: spectral evolution
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SN 1006: CR electron acceleration models
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@ different obliquity dependent electron acceleration efficiencies:
1. preferred quasi-perpendicular acceleration (previous PIC)
2. (a straw man’s model)
3. preferred quasi-parallel acceleration (like CR protons) ATP

=
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Supernova remnant simulations

CR electron acceleration: quasi-perpendicular shocks

Xray (0.8 — 2.0keV)
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CR electron acceleration: constant efficiency

radio (1.4 GHz) Xray (0.8 — 2.0keV) y-ray (E > 500 GeV)
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CR electron acceleration: quasi-parallel shocks

radio (1.4 GHz) Xray (0.8 — 2.0keV)
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SN 1006: multi-frequency spectrum
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Winner, CP+ (2020)
@ quasi-parallel acceleration model fits multi-frequency spectrum
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SN 1006: multi-frequency spectrum
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@ quasi-parallel acceleration model fits multi-frequency spectrum
° ')

@ TeV regime: hadronic pion decay AIP
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Conclusions for CR hydrodynamics at SNRs

CR hydrodynamics with kinetic plasma physics:
@ Shock finder enables CR acceleration in MHD simulations
)

@ CR electron spectral transport (CREST): multi-frequency spectra
and emission maps

=
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Conclusions for CR hydrodynamics at SNRs

CR hydrodynamics with kinetic plasma physics:
@ Shock finder enables CR acceleration in MHD simulations

@ CR electron spectral transport (CREST): multi-frequency spectra
and emission maps

CR acceleration constraints by MHD models:
@ TeV shell-type SNRs probe magnetic coherence scale in ISM

@ hybrid-PIC simulations of p* acceleration agree with global SNR

simulations

@ global SNR simulations imply preferred quasi-parallel e~ —
acceleration: new intermediate instability enables e~ E
(pre-)acceleration T

Christoph Pfrommer Particle acceleration at non-relativistic shocks
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PICOGAL: From lasma K netics to = smological axy Formation

This.pré_ject has reeeived fundfng from the 'I‘Eufopean Reséarch éounsil (ERC) under theiEUrop_e'a'n
Union’s Horizon 2020 research and.inno'vation program (grant agre_ement No PICOGAL-101019746):
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