Leptonic & Hadronic Photon Emission Models of High-Energy Sources

Anita Reimer (Innsbruck University)

FШF

Der Wissenschaftsfonds.

Co-funded by

Workshop, "PASTO – Particle Acceleration in Astrophysical Objects", Astron. Observatory of Rome, Sept 5, 2022

Model Building in HE Astrophysics

Environment of Jetted Active Galactic Nuclei (AGN)

Radiative Properties of the Non-thermal AGN

Homogeneous one-zone emission region

Particle & Photon Transport Equation:

$$\partial_t F_N + \partial_x (\kappa \partial_x F_N) + u \partial_x F_N - \frac{p}{3} \partial_x u \partial_p F_N + \frac{1}{p^2} \partial_p [p^2 (\dot{p}_{\rm loss} F_N) - p^2 A \partial_p F_N] + \dot{F}_N^{\rm cat} = Q_N^{inj}$$

with $F_{\mathbf{N}} = F_{\mathbf{N}}(\mathbf{x},\mathbf{p},t)$ the phase-space density of CRs

Emission Models of AGN Jets

• "Leptonic" models:

Jet material: rel e⁺e⁻ + cold e,p HE emission e⁺e⁻-initiated

"Hadronic" models:

Jet material: rel e⁺e⁻p + cold e,p HE emission dominantly p-initiated

"Lepto-hadronic" models: Jet material: rel e⁺e⁻p + cold e,p HE emission dominantly e⁺e⁻-initiated

Cosmic-ray Sources as Complex Systems

$$\partial_t F_N + \dot{F}_N^{\rm esc} + \frac{1}{p^2} \partial_p [p^2 (\dot{p}_{\rm loss} F_N)] + \dot{F}_N^{\rm cat} = Q_N^{\rm inj} \qquad \qquad \text{Nucleons}$$

$$\partial_{t}F_{\mu,\pi} + \dot{F}_{\mu,\pi}^{esc} + \frac{1}{p^{2}}\partial_{p}[p^{2}(\dot{p}_{loss}F_{\mu,\pi})] + \dot{F}_{\mu,\pi}^{cat} = \dot{F}_{\mu,\pi}^{p\gamma;h}$$
Unstable secondaries

$$\begin{split} \partial_t F_e + \dot{F}_e^{esc} + \frac{1}{p^2} \partial_p [p^2 (\dot{p}_{loss} F_e)] &= Q_e^{inj} + \dot{F}_e^{\gamma\gamma} + \dot{F}_e^{p\gamma} \\ \partial_t F_\gamma + \dot{F}_\gamma^{esc} + \dot{F}_\gamma^{\gamma\gamma} &= \dot{F}_\gamma^{em} + \dot{F}_\gamma^{p\gamma;h} \end{split} \tag{$Photons}$$

wi $\mathbf{F}_{\mathbf{X}}$ = $\mathbf{F}_{\mathbf{X}}\left(~\mathrm{p}, t \right)$, $\mathbf{F}_{\gamma} = \mathbf{F}_{\gamma}(\epsilon, t)$

the PS density of type X particles/photons

and
$$\begin{split} \dot{\mathbf{F}}_{\mu,\pi}^{\mathbf{p}\gamma;\mathbf{h}} &= \dot{\mathbf{F}}_{\mu,\pi}^{\mathbf{p}\gamma;\mathbf{h}} (\mathbf{F}_{\gamma}(\boldsymbol{\epsilon}, \mathbf{t}); \mathbf{p}, \mathbf{t}) \\ \dot{\mathbf{F}}_{\mathbf{e}}^{\mathbf{p}\gamma} &= \dot{\mathbf{F}}_{\mathbf{e}}^{\mathbf{p}\gamma} (\mathbf{F}_{\gamma}(\boldsymbol{\epsilon}, \mathbf{t}); \mathbf{p}, \mathbf{t}) \\ \dot{\mathbf{F}}_{\gamma}^{\gamma\gamma} &= \dot{\mathbf{F}}_{\gamma}^{\gamma\gamma} (\mathbf{F}_{\gamma}(\boldsymbol{\epsilon}, \mathbf{t}); \boldsymbol{\epsilon}, \mathbf{t}) \\ \dot{\mathbf{F}}_{\mathbf{e}}^{\gamma\gamma} &= \dot{\mathbf{F}}_{\mathbf{e}}^{\gamma\gamma} (\mathbf{F}_{\gamma}(\boldsymbol{\epsilon}, \mathbf{t}); \mathbf{p}, \mathbf{t}) \end{split}$$

& losses: $\dot{p}_{\rm loss}=\dot{p}_{\rm loss}(F_{\gamma}(\varepsilon,t),B(t);p,t)$

Photomeson production, Bethe-Heitler pair production, decay of unstable particles, γγ-pair production, synchrotron radiation, inverse Compton scattering, adiabatic losses, particle escape

Interaction Targets

=> Nature (& frequency) of dominating external target photon field depends on distance from the central engine Target photons for IC scattering are ...

• internal photon fields:

i.e. synchrotron radiation of the same relat. e^- : SSC

- external photon fields:
- accretion disk: EC-AC
- reproc. disk radiat. (via BLR): EC-BLR
- IR radiation from dust torus: EC-DT
- Optical radiation from host galaxy
- CMB, EBL

Modeling blazars with one-zone "leptonic models"

CR Hadrons in AGN Jets?

Internal Pair Cascades

Secondary pairs + photons initiate em pair cascades (Compton/synchrotronsupported) with a "strength" that is linked to the meson-production rate:

compactness parameter of the non-cascade photon field $I_s = L_s \sigma_T / (Rmc^3)$

Lepto-hadronic models of γ -loud AGN

Lepto-hadronic models of γ -loud AGN

• $\tau_{\gamma\gamma} < 1$, lin cascade setup:

Linear em Cascades: Targets

• Internal (i.e., jet) target photon fields

(e.g., Mannheim etal '91, '93, Mücke etal '01, '03, Dimitrakoudis etal '12, Böttcher etal'13, Weidinger etal,

'15, Cerutti etal, Zech etal, Gao etal '18, Oikonomou etal '19,)

• External target photon fields

(e.g., Protheroe '96, Atoyan&Derner'03, BRM'09, Dermer etal '14, Murase etal '14, Diltz etal '15, Zacharias

etal '22, ...) Hadronic models with dominantly jet target photon fields can fit average blazar SEDs;

30

require large jet powers ~10^{47...49}erg/s

External target fields boosted into jet frame can reduce required jet power to some extend

Non-linear em Cascades

I_p>I_{p,crit}, γ_P>γ_{crit} =(2B_c/B)^{1/3}, t_{esc} large:

 protons become targets of their own radiation (syn-radiating e[±]), radiative instabilities/feedback loops : I_γ~est, s>0

[e.g., Stern&Svennson'91, Kirk&Mastichiadis'92, Mastichiadis etal'05, Petropoulou etal'18]

[Mastichiadis et al '05]

Quiescent Core Emission: The Case of M87

LLAGN Jet Emission Models: The Case of M87

Hadronic Jet-Disc Model for M87

[Boughelilba, Reimer, Merten, 2022, ApJ, accepted]

Hadronic Jet-Disc Model for M87

Close-to-equipartition parameters fit core-jet SED of M87

Structured Jets: Spine-Sheath Configuration

Structured Jets: Extended Jets

<u>Early works</u>: Blandford & Königl '79; Marscher etal '80,'85; Reynolds '82; Ghisellini etal '85; Markoff etal '00; Graff etal '08; Jamil etal '10; ...

• <u>Accelerating/decelerating jets</u>: Ghisellini & Maraschi '89; Georganopoulos

'89,'03; Spada etal '01; ...

Accelerating parabolic base

transitioning to conical jet:

Ghisellini & Maraschi '89; Potter & Cotter '13a-c,'18; Zacharias et al '22;

[from: Potter & Cotter '13]

Extended Jets: Leptonic Emission Models

10⁻¹⁴

10-15

10-5

10⁰

10¹⁰

10⁵

eV

- Max syn power near transition zone
- HSPs require lower jet power and bulk speeds than FSRQs
- Compton-dominance from IC off CMB beyond transition region;
 TeV emission component from IC on star light
- Hard PL e injection required

- Injection of prim. p & e PL distribut. at base with e/p-density ratio =1
- Particle (e,p) injection from one slice to next slice following continuity equation
- Global continuity equation fulfilled only for p
- For magnetic-to-particle enthalpy ratio $\sigma_B(z_{term})$ one obtains sub-Eddington L_{jet}
- Particle (e,p,π,μ) evolution followed in each slice until steady-state reached; all relevant losses (internal & external targets) & gains (PL particle inj. to fulfill cont. eq.) considered

- Photon spectra dominated by leptonic processes (synchr., external IC)
- Strong impact of external radiation fields:

HE-hump mainly from **external IC** on BLR & DT; "Compton dominance" Photomeson production & photon absorption mainly on external fields

- e syn flux component: gradual increase till ~0.1pc, gradual decrease beyond ~10pc
- IC flux component: sequential dominance of AD -> BLR -> DT -> CMB as target with increasing z
- γ -rays produced all along jet; strongest IC flux contribution from $\approx 0.1-1 \text{ pc}(z_{acc})$

Leptonic & (for the presented parameter setting)
 hadronic extended jet
 models predict EC to
 dominate

 Notable impact of relativistic protons in extended jets:
 Strong secondary pair production! • Presented general workings of jet photon emission models

• Source dynamics [->(GR)MHD, ..] & particle acceleration simulations enter emission models typically in parametrized form

 Progress by combining particle acceleration & source dynamics models with emission models?