High-energy neutrinos from the Galaxy: expectations and experimental results

Silvia Celli silvia.celli@roma1.infn.it

INFN

Sapienza University of Rome and INFN

Particle Acceleration in aSTrophysical Objects - September 06th 2022

Neutrino properties and their interactions

- Elementary weakly interacting subatomic particle;
- Tiny mass: < 0.8 eV/c² (KATRIN Coll. 2022);
- Three flavor eigenstates: electron (v_e), muon (v_µ), tau (v_τ);

Everywhere:

340 v/cm³ in the Universe [E~0.0002 eV] 10^{11} v/cm²/s solar neutrinos at Earth [E < few MeV] $\rightarrow 10^{14}$ v/s through our body;

 Probably the second most common particle in the Universe (dark matter?).

The multi-messenger search for CR sources

Why neutrinos?

- stable
- electrically neutral
- weakly interacting

→ can reach Earth undeflected from cosmological distances

The search for CR sources

Gamma rays and neutrinos as messengers of cosmic-ray accelerators

- leptonic production is realized at CR-electron collisions with matter (bremsstrahlung) and/or radiation fields (inverse Compton) and/or magnetic fields (synchrotron);
- hadronic production is realized at CR-proton collisions with matter ("pp") and/or radiation fields ("pγ"), mostly via meson production.

Neutrinos only from hadronic mechanisms, gamma rays from both.

Hadronic interaction channels

5

pp interaction:

- accelerated protons
- dense target matter field

$$p+p \longrightarrow \left\{ \begin{array}{l} p+p+\pi^0 \\ p+n+\pi^+ \end{array} \right.$$

"CR reservoir" e.g. SBG, SNR

py interaction:

- accelerated protons
- dense target radiation field

$$p + \gamma \xrightarrow{\Delta^+} \begin{cases} p + \pi^0 \\ n + \pi^+ \end{cases}$$

"CR accelerators" e.g. AGN, GRB

Hadronic interaction channels

pp interaction:

- accelerated protons
- dense target matter field

$$p+p \longrightarrow \begin{cases} p+p+\pi^0\\ p+n+\pi^+ \end{cases}$$

py interaction:

- accelerated protons
- dense target radiation field

$$p + \gamma \xrightarrow{\Delta^+} \begin{cases} p + \pi^0 \\ n + \pi^+ \end{cases}$$

Neutrino properties and their interactions

σ_{vN} ~ 10⁻³⁸ cm² @ 1 GeV σ_{vp} / σ_{γp} ~ 10⁻⁷ @ 1 TeV

- Very faint event rates require to instrument large volumes —
 natural medium is ideal
- Products of neutrino interaction observed through Cherenkov light induced by ultra-relativistic propagation in medium transparent medium is needed

The Cherenkov technique for neutrino detectors

Looking for lepton tracks from $\mathbf{v} \longrightarrow \mathbf{lepton}$ conversion

Neutrino event topology

Isolated neutrinos interacting in the detector

Muon tracks

Calorimetry + all flavors

Astronomy: angular resolution

Isolated neutrinos interacting in the detector

Muon tracks

Calorimetry + all flavors

Astronomy: angular resolution

The atmospheric background

The atmospheric muon background

residual background from atmospheric neutrinos, suppressed by event selection and spectroscopic studies Experimental challenge

 $atm \mu$: atm v: $cosmic v = 10^{10}$: 10^4 : 1

The atmospheric neutrino background

Adrian-Martinez et al. [KM3NeT Coll.], J. Phys. G: Nucl. Part. Phys. 43 (2016)

Neutrino telescopes around the world

ANTARES Complete since 2008

KM3NeT Under Construction

Atmospheric neutrino veto: HESE

"Vetoing the muon produced by the same parent meson decaying in the atmosphere"

$$\pi \longrightarrow \mu^{atmo} + \nu_{\mu}^{atmo}$$

15

- Detects penetrating muons
- Reduced effective volume (400 MTon)
- Sensitive to all flavors
- Sensitive to the entire sky

in IceCube $E_{\nu} > 60 \,\mathrm{TeV}$

High Energy Starting Events (HESE)

all sky (but mostly from the Southern Hemisphere), 7.5 yrs

16

PeV v_e (shower) event, > 300 sensors, > 10⁵ photo-electrons reconstructed

Up-going Muons from 2009-2018 IC data

(through+starting with zen>85°): a view on the Northern Hemisphere

The non thermal Universe in the multi-messenger framework

ANTARES all sky diffuse flux

- Looking for an excess above a given energy threshold
- Combined track and shower sample
- Data (2007-2018): 50 events (27 tracks + 23 showers)
- Background expectation (atm. flux including prompt): 36.1 \pm 8.7 (19.9 tracks and 16.2 showers), stat+syst

RESULTS NOT REALLY CONSTRAINING, BUT FULLY COMPATIBLE WITH ICECUBE

ANTARES all sky diffuse flux

- Combined tracks+showers likelihood fit
- Cosmic flux: φ_{100 TeV} = (1.5 ± 1.0) x 10⁻¹⁸ GeV⁻¹ cm⁻² s⁻¹ sr⁻¹
 Γ = 2.3 ± 0.4

Where do cosmic neutrinos come from?

Anisotropic contributions from the Galaxy

Two main sources of (**pp**) neutrinos are:

- Diffuse emission along the Galactic Plane, originated in CR collisions with target gas density → could provide constraints about the CR distribution;
- Emission from Galactic population of sources → could help localizing the accelerators responsible for the CR flux and understanding the relative contribution of sources wrt diffuse emission.

Both can be <u>constrained from gamma-ray counterpart</u>:

$$\varphi_{\gamma,\text{tot}} = \varphi_{\gamma,\text{diff}} + \varphi_{\gamma,\text{S}} + \varphi_{\gamma,\text{TC}}$$

$$\varphi_{\nu,\text{tot}} = \varphi_{\nu,\text{diff}} + \varphi_{\nu,\text{S}}$$
regligible above few GeV
resolved +
unresolved +
unresolved sources
24

Diffuse emission from the Galactic Plane

$$\varphi_{\nu}(E_{\nu}, \hat{n}_{\nu}) = \frac{1}{3} \sum_{\ell=e,\mu,\tau} \left[\int_{E_{\nu}}^{\infty} dE \; \frac{d\sigma_{\ell}(E, E_{\nu})}{dE_{\nu}} \int_{0}^{\infty} dl \frac{\varphi_{\mathrm{CR}}(E, \mathbf{r}_{\odot} + l\,\hat{n}_{\nu})}{\mathrm{CR \; density}} \frac{n_{\mathrm{H}}(\mathbf{r}_{\odot} + l\,\hat{n}_{\nu})}{\mathrm{Gas \; density}} \right]$$

$$\varphi_{\rm CR}(E, \mathbf{r}) = \begin{cases} \varphi_{\rm CR, \odot}(E) & Case \ A\\ \varphi_{\rm CR, \odot}(E) \ g(\mathbf{r}) & Case \ B\\ \varphi_{\rm CR, \odot}(E) \ g(\mathbf{r}) \ h(E, \mathbf{r}) & Case \ Case \$$

homogenous CR density all along the Plane CR density following the SNR distribution CR density with r-dependent slope (KRA_y)

 \rightarrow A narrow region of the GP exists where diffuse dominates over isotropic emission (III<70° and IbI<3°, in the most optimistic case C)

Galactic diffuse neutrino flux

C	D L Cul	A	T/D A	36 1 1	1 6	1 50 D V/ C	
Sencifivities and	Results of the	Analysis on the	KRA.	Models with	the can	a SUPAV (IIIOTTS
Sensitivities and	results of the	Analysis on the	many	TATOUCIS WITH	i uic 5 an		utons

Energy Cutoff	Sensitivity $[\Phi_{KRA_{\gamma}}]$			Fitted Flux	<i>p</i> -value	Upper Limit (UL) at 90% CL	Combin	
	Combined	ANTARES	IceCube	$[\Phi_{\mathbf{KRA}_{\gamma}}]$	[%]	$[\Phi_{\mathrm{KRA}_{\gamma}}]$	ctorting	
5 PeV	0.81	1.21	1.14	0.47	29	1.19	Starting	
50 PeV	0.57	0.94	0.82	0.37	26	0.90	the	

Combined data are starting to constrain the models

PeVatron candidates in our Galaxy

Combined ANTARES+IceCube limits on Southern Hemisphere sources

90% C.L. Sensitivity and Limits for $\gamma = 2.0$

90% C.L. Sensitivity and Limits for $\gamma = 2.5$

No significant v-clustering observed in the Southern Hemisphere

Illuminati et al. [ANTARES & IceCube Coll.], ICRC 2019 PoS 919

Galactic contribution (diffuse + sources) expected < 15% above 60 TeV

Neutrinos from the SNR RX J1713.7-3946?

Neutrino expectations from the GC Ridge

Fermi Bubbles

Fermi-LAT

- Hard and uniform emission observed at HEs, corresponding to a luminosity of L_γ ~ 4 x 10³⁷ erg/s [1-100 GeV];
- Origin of radiation still under debate;
- Indication for advective CR outflow? Requires hard CR injection in the Galactocentric region (AGN-like, SF?), extremely long trapping timescales (~8 Gyr) and 4x10³⁸ erg/s proton power;
- In situ acceleration (turbulence, shock?) has also been suggested.

Taylor & Giacinti, PRD 95 (2017) 023001

Expected neutrinos from Fermi Bubbles

A comprehensive model

A. Palladino & W. Winter, A&A 615 (2018) A168

Atmospheric component: conventional + prompt

A comprehensive model

A.

A. Palladino & W. Winter, A&A 615 (2018) A168

- Residual atmospheric component, passing the veto;
- EG pp-component (e.g. SBGs) consistent with non-blazar limit to EGBR, as well as with lack of multiplets form individual sources;
- EG pγ-component non statistically significant by its own;
- Galactic components contributes ~20% to the total neutrino flux.

Summary & Conclusions.

- We are witnessing the birth of **very-high-energy neutrino astronomy**, that has opened a new window into **extreme phenomena**, unaccessible to very-high-energy photons;
- The sources of **diffuse cosmic neutrinos** have not yet been localized nor identified yet: transients? unresolved? gamma-ray opaque?
- Experimental upper limits towards a flux of diffuse neutrinos from the Galactic Plane are becoming more and more stringent;
 - Neutrinos from **Galactic accelerators** to be investigated with KM3NeT in few years of operation;
 - Significant sensitivity improvement expected from next generation instruments (KM3NeT, IceCube-Gen2).

Thanks for your kind attention!

ANTARES search for cosmic sources

13 years of data point towards **no significant** excess over background

1. Full-sky search

38

IceCube search for cosmic sources

1. Clustering search: 10 years of data point towards no significant excess over background.

40.87°

Right Ascension

42.87°

 -2.30°

A hotspot is seen in the Northern Hemisphere, located 0.35° from the active galaxy **NGC1068**

pre-trial

0.0

Equatorial

38.87°

IceCube search for cosmic sources

2. Catalog search: 110 sources weighted by their gamma-ray flux (Fermi > GeV). Includes 98 extra-galactic sources (mostly blazars and starburst galaxies), as well as 12 Galactic sources (97 North, 13 South).

M.G. Aartsen et al. [IceCube Coll.], PRL 124 (2020) 051103

→ Northern Catalog filled with 97 objects: most significant excess is located 0.35° from the SBG **NGC1068** (2.9σ post-trial);

→ Southern Catalog filled with 13 objects: most significant excess consistent with background.

KM3NeT at a glance

Main detector elements:

- Digital Optical Modules (DOMs)
- Detection Units (DUs)
- Seafloor network: Junction Boxes (JBs) and electro-optical cables

KM3NeT at a glance

ARCA (1 GTon) Astroparticle Research with Cosmics in the Abyss

3500 m depth, offshore Sicily

ORCA (6 MTon)

Oscillation Research with Cosmics in the Abyss

2500 m depth, offshore Toulon

Expected performances of the KM3NeT detectors

Angular resolution is crucial for astronomical studies

Key astrophysical cases: Galactic accelerators & diffuse emission

Investigation of neutrino emissions from Galactic sources in few years crucial for unveiling hadronic accelerators!

5σ detection in less than 1 year for 1 building block

Coniglione et al. [KM3NeT Coll.], VLVnT-2021 proceedings, JINST

Muller et al. [KM3NeT Coll.], PoS (ICRC2021) 1077

KM3NeT: current status & next milestones

• **Ongoing** sea campaign at both ARCA and ORCA sites.

• ~400 M USD facility.

Absorption and scattering: water vs ice

	acqua marina (Mar Mediterraneo) $\lambda = 473(375) nm$	acqua (Lago di Baikal) $\lambda = 480 nm$	ghiaccio (Polo Sud) $\lambda = 400 nm$
$\lambda_a \ \lambda_s^{\mathrm{eff}}$	$60 \pm 10(26 \pm 3) m$ $270 \pm 30(120 \pm 10) m$	20 - 24 m 200 - 400 m	$\frac{110 m}{20 m}$

Tabella 3.2. Parametri della propagazione della luce in acqua e ghiaccio.

Natural background

 ${}^{40}\mathrm{K} \rightarrow {}^{40}\mathrm{Ca} + e^- + \bar{\nu}_e$

e

$${}^{40}\mathrm{K} + e^- \rightarrow {}^{40}\mathrm{Ar} + \nu_e + \gamma. \label{eq:K}$$

Gli elettroni prodotti nel primo processo, spesso, hanno energia sufficientemente elevata da indurre l'effetto Cherenkov, mentre nel processo di cattura dell'elettrone, il fotone nello stato finale viene prodotto con un'energia ($E_{\gamma} = 1.46 M eV$) che può facilmente portare alla produzione di elettroni con energie sopra la soglia di emissione di luce Cherenkov.

KM3NeT detection prospects for the next core collapse Galactic supernova

- Neutrinos below 100 MeV expected at several stages of the stellar collapse
- Main interaction channels in water are IBD of electron antineutrinos with protons, ES on electrons and CC interaction with oxygen nuclei
- Cherenkov signature detected as a population of coincidences in single **DOMs**

KM3NeT 105 ORCA background ORCA+ARCA, 11 Mo 100 40 M_o at 10 kpc Way $27 M_{\odot}$ at 10 kpc $11 M_{\odot}$ at 10 kpc 50 Sensitivity $[\sigma]$ KM3NeT MC 10 lactic Cent 5 3 10 20 30 40 50 60 10 Distance [kpc] 4 5 6 8 9 11 12 Multiplicity Aiello et al. [KM3NeT Coll.], Eur. Phys. J. C 81 (2021) 445

ARCA background

ORCA+ARCA, 40 Mo

ORCA+ARCA, 27 MO

Bendhaman et al. [KM3NeT Coll.], PoS (ICRC2021) 1090

> ARCA6 and ORCA6 detectors are already sensitive to ~60% of the CCSN Galactic population Real time alert system is in place within SNEWS since 2019

Atmospheric neutrinos

See also C. Mascaretti & F. Vissani, JCAP 08 (2019) 004

Neutrino expectations from the Galactic Halo

$$N_{\nu} \propto \sigma_{pp} \frac{dN}{dE_{\rm CR}} N_H \Delta \Omega \Delta E_{\nu} \Delta t$$

$$\frac{N_{\nu}^{h}}{N_{\nu}^{d}} = \left(\frac{n_{p}^{h}}{n_{p}^{d}}\right) \left(\frac{L^{h}}{L^{d}}\right) \left(\frac{\Delta\Omega^{h}}{\Delta\Omega^{d}}\right) \approx 0.05 \left(\frac{n_{p,-3}^{h}}{n_{p,0}^{d}}\right) \left(\frac{L_{1}^{h}}{L_{1}^{d}}\right) \left(\frac{\Delta\Omega^{d}}{0.1}\right)^{-1}$$

For constant CR intensity, number of expected neutrinos is dominated by disc unless Galactic halo is very extended (L^h~100 kpc).

In such a case, neutrino luminosity required to explain IC data would amount to

$$L_{\nu} \simeq 4\pi L_{\rm h}^2 E_{\nu} F_{\nu} \simeq 8 \times 10^{38} \text{ erg/s}$$

In a fully dumped scenario ($t_{pp} < t_{esc}$) and $K_v = 0.5$, a proton luminosity of $L_p = 10^{39}$ erg/s would be required.

Do massive stellar clusters operate as PeVatrons?

51

Particle acceleration expected at the **wind termination shock**

—> dissipation of the wind energy into magnetic perturbations

Sensitivity studies to extended sources

CTA 50 hrs

KM3NeT 10 yrs

Ambrogi, Celli & Aharonian, Astropart. Phys. 100 (2018) 69

Fermi Bubbles

Expected neutrinos from Fermi Bubbles

The HE and VHE diffuse gamma-ray flux

Source contribution in HE & VHE gammas

GeV Galactic sources from Fermi 3FGL and 3FHL TeV Galactic sources from TeVCat (116 with |b|<10°)

→ ratio among resolved and diffuse grows with energy, from 6% at 10 GeV, to 30-50% at 1 TeV

what about unresolved sources?

Correct estimation would require knowledge of luminosity function and space distribution of sources

Contributions from our Galaxy: gammas

From the recent Galactic Plane Survey of H.E.S.S.:

$$\varphi_{\gamma,S} \simeq \varphi_{\gamma,obs} - \varphi_{\gamma,diff} = k_{\gamma}(\hat{n}_{\gamma}) \left(\frac{E_{obs}}{\text{TeV}}\right)^{-\alpha_{\gamma}} \exp\left(-\sqrt{\frac{E_{obs}}{E_{cut,\gamma}}}\right)$$
can be modeled in the context of CR transport

 $\varphi_{\rm CR}(E, \mathbf{r}) = \begin{cases} \varphi_{\rm CR, \odot}(E) & Case \ A\\ \varphi_{\rm CR, \odot}(E) \ g(\mathbf{r}) & Case \ B\\ \varphi_{\rm CR, \odot}(E) \ g(\mathbf{r}) \ h(E, \mathbf{r}) & Case \ C \end{cases}$

A: homogenous CR density all along the Plane

B: CR density following the SNR distribution along the Plane

C: CR density with radially dependent spectral index (KRA_v)

Contributions from our Galaxy: neutrinos

Extended Hot Region Galactic Ridge

In terms of v, the spectrum depends on the sources:

G. Pagliaroli & F. Villante, JCAP 08 (2018) 035