From Turbulence to Reconnection to Particle Acceleration: Connecting the Dots

Luca Comisso

Department of Astronomy, Columbia University Columbia Astrophysics Laboratory, Columbia University

Particle Acceleration in Astrophysical Objects Astronomical Observatory of Rome September 5-7, 2022

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Outline

Turbulence

Magnetic Reconnection

Particle Acceleration

Outline

Turbulent Plasmas are Ubiquitous

Turbulence in Fluids

Gallery of Fluid Motion

Sagaut et al. 2013

Big whirls have little whirls, That feed on their velocity; And little whirls have lesser whirls, And so on to viscosity.

Lewis Fry Richardson

Turbulence Cascade à la Richardson

Turbulence Cascade with Magnetic Field

Turbulence Cascade with Magnetic Reconnection

Turbulence Cascade with Magnetic Reconnection

Turbulence Cascade with Magnetic Reconnection

out-of-plane electric current density (magnetic field lines superimposed)

[zoomed-in subdomain from 2D turbulence simulation]

Magnetic reconnection occurs in *intermittent current sheets* \Rightarrow inevitable when $l \gg \lambda_d$ (essentially all astrophysical systems of interest here)

How Turbulence+Reconnection Accelerate Particles?

Turbulence + Reconnection + Particles:

Fully-Kinetic Treatment - PIC Method

PIC code: TRISTAN-MP (Spitkovsky 2005)

Numerical Simulations with Massive Supercomputers

- ▶ This problem is hard (needs large separation of scales)
- We can do it now thanks to huge numerical simulations $(> 10^{10} \text{ cells}, > 2 \times 10^{11} \text{ particles})$

Turbulence Structures from PIC Simulations

Luca Comisso PASTO 2022

Reconnecting Current Sheets in Turbulence

Comisso & Sironi, 2018, 2019

The large inertial range allows the development of reconnection layers with flux ropes

Reconnection with flux ropes in dedicated lab experiment

Reconnecting Current Sheets in Turbulence

Reconnecting Current Sheets and Energization

3D PIC turbulence simulation at 2460^3

 Reconnecting current sheets are sites of particle energization (only up to moderate energy, as we will see later)

Heating and Particle Acceleration

▶ Where does the dissipated turbulent energy go?

Generation of power-law particle energy distributions

Comisso & Sironi 2018

 Turbulence produces robust power-law particle energy distributions for systems with

 $L \gg$ kinetic scales

Zhdankin et al. 2018

Let's Dive Into the Particle Acceleration Mechanism

How are Turbulence, Reconnection, and Particle Acceleration Interconnected?

PASTO 2022

Two Stages of Particle Acceleration

► Particles belonging to the non-thermal tail experience a sudden energy jump from $\gamma \sim \gamma_{th}$ to $\gamma \gg \gamma_{th} \sim \sigma_0 \gamma_{th}$

• Particle continue to gain energy with a slower rate from $\gamma \sim \sigma_0 \gamma_{th}$ to much higher energies (up to $\gamma \sim \gamma_c$).

1st Acceleration Stage ("Injection")

$$W_{\parallel,\perp}(t) = q \int_0^t \boldsymbol{E}_{\parallel,\perp}(t') \cdot \boldsymbol{v}(t') dt'$$

 Δγ_{inj} ~ W_{||}/m_ec² ~ σ₀γ_{th0} (Comisso & Sironi 2018, 2019)
 v · E_{||} energization is important initially (low Δγ-range) (v · E_⊥ energization is responsible for further acceleration)

2nd Acceleration Stage (Stochastic Fermi Acceleration)

Note that the power-law tail of the particle spectrum starts at $\gamma/\gamma_{\sigma} \gtrsim 1$

• The PIC simulations are well fitted by $D_{\gamma} \sim 0.1\sigma \left(\frac{c}{l}\right)\gamma^2$

(see also Wong et al. 2020 and Lemoine's talk)

Two-Stage Acceleration Process

Injection phase controlled by E_{||} ⇒ d(\(\gamma\))/dt = \(\frac{e}{mc}\) \(\beta_R \delta B_{rms}\)
Acceleration controlled by D_\(\gamma\) ⇒ \(\frac{d(\(\gamma\))}{dt} = 0.4\) \(\beta \beta \beta

Anisotropy of the Pitch Angle Distribution

Importance for Synchrotron Radiation

The synchrotron power emitted by a single electron due to synchrotron radiation is (in the local comoving frame)

$$P_{\rm syn} = \frac{2e^4}{3m^2c^3}B^2\gamma^2\left(\frac{v}{c}\right)^2\sin^2\alpha$$

• The synchrotron power has a strong dependence $(\propto \sin^2 \alpha)$ on the pitch angle.

The Puzzling Radio Spectrum of the Crab Nebula

Credits: NASA, ESA

- Isotropic distribution of electrons implies $dN/d\gamma \propto \gamma^{-1.6}$
- An anisotropic pitch angle distribution helps alleviate the requirement of a very hard particle distribution (even p > 2 can give $\nu F_{\nu} \propto \nu^{0.7}$).

Synchrotron spectrum hardened by the α anisotropy

- Low frequencies: $\nu F_{\nu} \propto \nu^{4/3}$
- High frequencies: $\nu F_{\nu} \propto \nu^{(3-p)/2}$
- Intermediate frequencies: $\nu F_{\nu} \propto \nu^{(3-p+2q)/(2+q)}$

Comisso, Sobacchi, Sironi 2020

Synchrotron Emission in the Fast Cooling Regime

Striani et al. 2011, Buehler et al. 2012 1314151617181 9 1101 100 MeV [107 am² s⁻¹] Spectrum (Striani et al. 11) og $\epsilon F(\epsilon)$ [erg cm $^2 \rm s^{-1}]$ -1 12 log s [eV]

Origin of PWN gamma-ray flares exceeding the synchrotron burnoff limit? Axelsson et al. 2012, Hand 2012

• Origin of the steep spectrum in the prompt phase of GRBs?

See Comisso & Sironi 2021 for Insights from Relativistic Turbulence

Particles exceeding the radiation reaction limit

• The highest-energy particles exceed the nominal radiation reaction limit γ_{rad} thanks to their small pitch angle.

Hard synchrotron spectrum

- ► Hard synchrotron spectrum: $\nu F_{\nu} \propto \nu^{0.8}$ up to ν_{peak} (s > 0.8 for higher σ_0)
- ▶ Excess of synchrotron radiation (~ 35%) above the nominal radiation-reaction-limited frequency $\nu_{\rm rad}$

Relevance to other Astrophysical Systems

Jets from BHs

Plasma around BHs

Credits: EHT Collaboration

Credits: NRAO/Walker et al. (2018)

Solar Corona

Credits: NASA

Summary

► Fully Kinetic Simultaneous Treatment of Turbulence, Reconnection, and Particle Acceleration.

- ► High-Energy Particles are Generated Self-Consistently as a By-Product of Turbulence + Reconnection.
- ▶ Particle Acceleration Follows a Two-Stage Process.
- Turbulence + Reconnection Generate Anisotropic Pitch Angle Distributions.
- ► Anisotropic Pitch Angle Distributions affect the Synchrotron Spectrum produced by the Energetic Particles.

Fully-Kinetic Treatment including Radiation Reaction

 $\boldsymbol{F}_{RR} = \frac{2}{3}r_0^2 \Big[(\boldsymbol{E} + \boldsymbol{\beta} \times \boldsymbol{B}) \times \boldsymbol{B} + (\boldsymbol{\beta} \cdot \boldsymbol{E})\boldsymbol{E} \Big] - \frac{2}{3}r_0^2\gamma^2 \boldsymbol{\beta} \Big[(\boldsymbol{E} + \boldsymbol{\beta} \times \boldsymbol{B})^2 - (\boldsymbol{\beta} \cdot \boldsymbol{E})^2 \Big]$

PIC code: TRISTAN-MP (Spitkovsky 2005)

Radiation-Reaction-Limited Lorentz Factor

- The cooling regime can be parametrized by the value of the particle Lorentz factor (γ_{rad}) for which the radiation drag force balances the accelerating force.
- For ultra-relativistic particles $(\gamma \gg 1, \beta \simeq 1)$

$$oldsymbol{F}_{RR}\simeq -rac{2}{3}r_0^2\gamma^2oldsymbol{eta}ig[(oldsymbol{E}+oldsymbol{eta} imesoldsymbol{B})^2-(oldsymbol{eta}\cdotoldsymbol{E})^2ig]$$

 Then the radiation-reaction-limited Lorentz factor is given by

$$F_{RR}^{\text{sync}} = F_{\text{acc}}$$

$$(2/3)r_0^2 \gamma^2 B^2 \sin^2 \alpha = eE$$

$$\Rightarrow \gamma_{\text{rad}} = \sqrt{\frac{3m_e^2 c^4}{2e^3} \frac{E}{B^2}}$$

Formation of a hard non-thermal particle spectrum

Particle Cooling Modifies the Particle Spectrum

- Particles cool at different rates $(P_{\text{syn}} \propto \gamma^2 \sin^2 \alpha)$.
- The particle spectrum becomes harder because the *pitch* angle anisotropy is energy dependent