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High-mass gamma-ray binaries (HMGB)

@ The phenomenological term
gamma-ray binary was mostly
assign to high-mass star+CO and
a gamma-ray dominated SED
(without the star).

Main elements of a HMGB.
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Malyshev 2020...) Typical SED of a HMGB.
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High-mass gamma-ray binaries (HMGB)

@ The phenomenological term
gamma-ray binary was mostly
assign to high-mass star+CO and
a gamma-ray dominated SED
(without the star).

@ HMGB are among the most
powerful galactic sources, with
L ~ 10%8 (MeV), 1034-37 (GeV) and
103235 erg s~ (TeV), reaching
~ 100 TeV. ®r

Main elements of a HMGB.

log (E L, [erg/s] )

(Some reviews: Mirabel 2006; Romero 2009; B-R & Khangulyan

2009; Dubus 2015; Paredes & Bordas 2019; Chernyakova &
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Malyshev 2020...) Typical SED of a HMGB.
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High-mass gamma-ray binaries (HMGB)

@ The phenomenological term
gamma-ray binary was mostly
assign to high-mass star+CO and
a gamma-ray dominated SED
(without the star).

@ HMGB are among the most
powerful galactic sources, with
L ~ 10% (MeV), 10%*-%7 (GeV) and
10%2-3% erg s~ (TeV), reaching
~ 100 TeV. ®r
@ The great majority of the known 71
HMGB are VHE emitters; we focus
on X- and ~-rays, although radio is
important for middle-large scales.
(Some reviews: Mirabel 2006; Romero 2009; B-R & Khangulyan

Main elements of a HMGB.

log (E L, [erg/s] )

2009; Dubus 2015; Paredes & Bordas 2019; Chernyakova &
log (E [eV])

Malyshev 2020...) Typical SED of a HMGB.
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Non-accreting vs accreting HMGB

@ A non-accreting HMGB consists
of a young pulsar plus an OB star
whose winds interact in the
ejector regime (mostly).

Orbital
motion

‘Wind
standoff

High-mass star+young psr (Zabalza, B-R, et al. 2013)

Corilis

Coriolis jet bending

Sense of the orbit

ind jet bending

(e.g., B-R, Khangulyan, Aharonian, Barkov, Perucho + ...;

Bogovalov, + ...; Romero, + ...; Dubus, Lamberts, Cerutti + ...; (s
om0

Sierpowska-Bartosik, Torres, Papitto + ...; Bednarek, + ...;

Huber, Kissmann, Reimer, + ...; Yoon, Heinz, Zdziarski + ...;

Chernyakova, Neronov, + ...; Takata, Kong, Cheng, + ...; etc.) High-mass microquasar (B-R & Barkov 2016)
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Non-accreting vs accreting HMGB

@ A non-accreting HMGB consists
of a young pulsar plus an OB star
whose winds interact in the
ejector regime (mostly).

@ A HMMQ consists of a CO plus
an OB star in which the wind is
accreted and jets form, which
interact with the wind.

(e.g., B-R, Khangulyan, Aharonian, Barkov, Perucho + ...;
Bogovalov, + ...; Romero, + ...; Dubus, Lamberts, Cerutti + ...;
Sierpowska-Bartosik, Torres, Papitto + ...; Bednarek, + ...;
Huber, Kissmann, Reimer, + ...; Yoon, Heinz, Zdziarski + ...;

Chernyakova, Neronov, + ...; Takata, Kong, Cheng, + ...; etc.)

Coriolis

Orbital
motion

‘Wind
standoff

High-mass star+young psr (Zabalza, B-R, et al. 2013)

’
iolis jet bending

Sense of the orbit

ind jet bending

Star
02520

High-mass microquasar (B-R & Barkov 2016)
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Non-accreting vs accreting HMGB

@ A non-accreting HMGB consists
of a young pulsar plus an OB star
whose winds interact in the
ejector regime (mostly).

Coriolis

@ A HMMQ consists of a CO plus S
an OB star in which the wind is P

accreted and jets form, which standoff
interact with the wind.

@ In both cases, outflows
interacting along the orbit are
complex and emit radio, X- and
~~-rays, likely through
synchrotron and IC, plus ... i

ind jet bending

(e.g., B-R, Khangulyan, Aharonian, Barkov, Perucho + ...;

Bogovalov, + ...; Romero, + ...; Dubus, Lamberts, Cerutti + ...; (s

02520

Sierpowska-Bartosik, Torres, Papitto + ...; Bednarek, + ...;
Huber, Kissmann, Reimer, + ...; Yoon, Heinz, Zdziarski + ...;

Chernyakova, Neronov, + ...; Takata, Kong, Cheng, + ...; etc.) High-mass microquasar (B-R & Barkov 2016)
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Pseudocolor

Non-accreting HMGB =i e

Orbital
‘motion

Wind
standoff

(from Zabaiza et al. 2013)

(Zabalza, B-R, et al. 2013)

RHD simulations with PLUTO of
2-wind-orbit interactions (low ¢).
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Fig. 2. Representation of the distribution of density in the X¥~, XZ- and YZ-planes for 3DIf at 1 = 3.9 days (apastron). Streamlines are shown
in 3D
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High-mass microquasar

[P
P
e B

RHD simulations with PLUTO of
jet-wind-orbit interactions.

s jet bending

Sense of the orbit

ind jet bending

Star
(0,0:252,0)

(HMMQ, e = 0; B-R & Barkov 2016; Barkov & B-R 2021)

Focus on non-accreting HMGB scenario,
but those are qualitatively similar to
HMMQ (not solving misteries here).




e HMGB phenomenology (cleanest cases)
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LS 5039 at high energies

@ 06.5V(f) + a possible neutron star at

~ 2 kpc
@ P~ 3.9days and e~ 0.35

@ Reaching ~ 2 x 10% (GeV) and

5x 10% erg s~ (TeV).

@ MeV detection (consistent variability
and SED) reaching ~ 5 x 10%° erg s—'.

T T T T
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(Casares et al. 2005a; Aharonian et al. 2006; Takahashi et al. 2009; Chang
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LS 5039 > 10 TeV

Moderately eccentric, compact, O+CO? binary
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FIGURE 4. Left: SEDs obtained from monoscopic and a stereoscopic analyses of the H.E.S.S.-IT and H.E.S.S.-I data sets, respec-
tively. Results of fits with power-law functions are given in the inset. Also an SED obtained from a re-analysis of Fermi-LAT data is
shown. Right: SEDs resulting from H.E.S.S.-I analyses for parts of the orbit corresponding to the inferior or superior conjunction.
The corresponding orbital phase ranges are given for reference. Fit results are given in the main text.

Detected by HAWC up to ~ 100 TeV.

(HESS: Bordas et al. 2015; Goodman, Gamma2022)
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1FGL J1018.6—5856 at high energies

35 T T T T T

@ 06V(f) + a possible neutron 0| Hrss i
star at ~ 6.4 kpc Bl asi + +
L] 2.0 L
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(Ackermann et al. 2012; HESS 2015; Collmar, VGGRS 2017;
van Soelen et al. 2022)
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1FGL J1018.6—-5856 > 10 TeV

Moderately eccentric?, relatively compact, 0+CO? binary (10s)
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Fig. 1. SED of HESSJ1018-589 A/IFGLJ1018.6-5856 is shown in
black (filled squares and circles for the LAT and HESS detection). For
comparison, the SEDs of LS 5039 during superior (SUPC) and inferior
conjunction (INFC) are also included (blue points from Hadasch et al.
2012; Aharonian et al. 2005a).
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LMC P3 at high energies

@ O5lli(f) + a possible neutron . ooisf- 7
star at ~ 50 kpc 2% ool
@ P=10.3daysand e~ 0.4 ?gm_ I
@ Reaching ~ 4 x 10% (HE) and ", J
5 x 10% erg s—' (VHE) g B
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LMC P3 > 10 TeV

Moderately eccentric, compact, O+CO? binary
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Fig. 3. Spectral energy distribution averaged over the full orbit (green,
squares) and for the on-peak orbital phase range (orbital phase from
0.2 to 0.4: blue, circles). The data points have 1o statistical error
bars, upper limits are for a 95% confidence level. The best fit and
its uncertainty are represented by the solid lines and shaded areas,
respectively.
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LS | +61 303 at high energies

@ BOV(e) + a likely neutron

star at ~ 2 kpc v T ]
@ P~ 26.5days and ! M% w _
e~06-07 : r% -
@ Reaching ~ 2 x 10% (HE) - M e A
33 —1 L ——
and5 x 10> ergs~' (VHE) M+w al-

RXTE/PCA
20.08-2007—03:03-2010

@ Similar MeV SED to LS 5039 .
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(Casares et al. 2005b; Albert et al. 2006; Zhang et al. Phase Fiase
2010; Hadasch et al. 2012; Collmar, VGGRS 2017) Messy behavior due to superorbital modulation.
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LS I +61 303 > 10 TeV

Eccentric, relatively compact, Be+pulsar? binary
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Figure 3: Spectral energy distribution (SED) for LS I +61°303 for two parts of the orbit (parts of the orbit
shown on top panels). SED on the left is near apastron passage covering ¢ = 0.5 — 0.8 and SED on the
right is for the rest of the orbit for ¢ = 0.8 — 0.5. The orbital parameters shown on top panel are used from

[14]

(VERITAS: Kar et al. 2017)
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e Acceleration and radiation modelling
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Radiation modelling
@ Cooling: syn., IC, adiabatic
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@ @
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(e.g., Bednarek 1997; B-R & Khangulyan 2009; Takahashi+09)
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Radiation modelling
@ Cooling: syn., IC, adiabatic

@ < MeV dominated by syn. (IC?),
and GeV (syn.?) and TeV by IC.

(e.g., Bednarek 1997; B-R & Khangulyan 2009; Takahashi+09)
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(e.g., Kefala & B-R)w LS 5039 and ¢ effects
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Radiation modelling

@ Cooling: syn., IC, adiabatic

APV OE-0 |

ASD 0110

AeLGE0

00 02 04 06 08 10 12 14 16 18 20

e.g., Molina & B-R 20207) *  (Huber et al. 2021])

i

0.2-5TeV 0.1-10GeV 10-30MeV 1-10 keV

@ < MeV dominated by syn. (IC?), :
and GeV (syn.?) and TeV by IC. I
T 80
@ Important: y-ray reprocessing. 5@
(e.g., Bednarek 1997; B-R & Khangulyan 2009; Takahashi+09) 2f
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Phenomenological E,.x in HM

@ Different acceleration sites, and
mechanisms (Fermi |, ll, shear; B
reconnection; converter mechanism).
(e.g., Rieger et al. 2007; B-R 2012; B-R & Rieger 2012, Derishev
& Aharonian 2012)

d, cm

10 GeV 100 GeV 1 TeV 10TeV 100 TeV
(1 Khangulyan et al. 2008;| Bordas et al. 2015)
0"g INFC ExpCutOff.

0455509

supc
<045 andg>0.9

E? % F(E) [TeViem™.s]

HES.S.
Preliminary

L L
10

-
7 True energy [Tev]

LS 5039: detected at ~ 100 TeV by HAWC.
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Phenomenological E,.x in HM

@ Different acceleration sites, and
mechanisms (Fermi |, Il, shear; B
reconnection; converter mechanism).
(e.g., Rieger et al. 2007; B-R 2012; B-R & Rieger 2012, Derishev
& Aharonian 2012)

@ E,. for the most relevant processes
(tice ~ nE/qBc; D ~ xDgonm; RB ~ct?):

d, cm

10 GeV 100 GeV 1 TeV 10TeV 100 TeV
(1 Khangulyan et al. 2008;| Bordas et al. 2015)
0"g INFC ExpCutOff.

0455509

supc
<045 andg>0.9

E? % F(E) [TeViem™.s]

HES.S.
Preliminary

L L
10

-
(e.g., Khangulyan et al. 2008; B-R & Khangulyan 2009; " True energy [Tev)

Takahashi et al, 2009) LS 5039: detected at ~ 100 TeV by HAWC.
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Phenomenological E,.x in HM

@ Different acceleration sites, and
mechanisms (Fermi |, Il, shear; B
reconnection; converter mechanism).
(e.g., Rieger et al. 2007; B-R 2012; B-R & Rieger 2012, Derishev
& Aharonian 2012)

@ E... for the most relevant processes
(tacc ~ WE/qBC; D~ XDBohm; RB NCt?):

o Hillas limit (e*, p):

d, cm

ErI;Iax ~ 300 R12 BO TeV
10 GeV 100 GeV' 1TeV 10 TeV 100 TeV/
(1 Khangulyan et al. 2008;| Bordas et al. 2015)
0'g INFC ExpCutOff.
= 0.45<6<0.9
7wl
I F sure ¢
£t S0 ana>09 f
£ H.ES.S.
r Preliminary
(e.g., Khangulyan et al. 2008; B-R & Khangulyan 2009; " True energy [Tevt °

Takahashi et al, 2009) LS 5039: detected at ~ 100 TeV by HAWC.
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Phenomenological E,.x in HM

@ Different acceleration sites, and
mechanisms (Fermi |, Il, shear; B
reconnection; converter mechanism).
(e.g., Rieger et al. 2007; B-R 2012; B-R & Rieger 2012, Derishev
& Aharonian 2012)

@ E... for the most relevant processes
(tacc ~ WE/qBC; D~ XDBohm; RB NCt?):

e Hillas limit (e*, p):

d, cm

H
Emax ~ 300 Ry By TeV
e Escape/adiabatic loss (e*, p): “ e 0 igv . ltOTlevzml)OOTev
dy —1 —1 angulyan et al. H ordas et al.
E.x ~ 90 R12 BO Vio ™ TeV o' ST
N o o f '
® ; H.ES.S.
r Preliminary
(e.g., Khangulyan et al. 2008; B-R & Khangulyan 2009; * [E— w

Takahashi et al, 2009) LS 5039: detected at ~ 100 TeV by HAWC.

V. Bosch-Ramon (ICCUB) Gamma-ray binaries as powerful accelerators September 6th, 2022 19/27



Phenomenological E,.x in HMGB

@ Different acceleration sites, and
mechanisms (Fermi |, Il, shear; B
reconnection; converter mechanism).
(e.g., Rieger et al. 2007; B-R 2012; B-R & Rieger 2012, Derishev
& Aharonian 2012)

@ E... for the most relevant processes
(tacc ~ WE/qBC; D~ XDBohm; RB NCt?):

e Hillas limit (e*, p):

Ex ~ 300 Riz By TeV .
) Escape/adiabatic Ioss (ei, p): 10 GeV 100 GeV 1TeV 10 TeV 100 TeV

(1 Khangulyan et al. 2008;| Bordas et al. 2015)

Emix ~ 90 Ri2 By vy ;' TeV

e Diffusion (e*, p): §
diff —-1/2 —1/2

E ~ 40 R12 BO 4 X4 TeV

max

INFC ExpCutont
0455509

supc
<045 andg>0.9

2 F(E) [TeVem?s]
T

HES.S.
Preliminary

10 L L

(e.g., Khangulyan et al. 2008; B-R & Khangulyan 2009; " True energy [Tevt *
LS 5039: detected at ~ 100 TeV by HAWC.

Takahashi et al. 2009)
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Phenomenological E,.x in HMGB

@ Different acceleration sites, and
mechanisms (Fermi |, Il, shear; B
reconnection; converter mechanism).
(e.g., Rieger et al. 2007; B-R 2012; B-R & Rieger 2012, Derishev
& Aharonian 2012)

@ E... for the most relevant processes
(tacc ~ WE/qBC; D~ XDBohm; RB NCt?):

e Hillas limit (e*, p):

Ex ~ 300 Riz By TeV .
) Escape/adiabatic Ioss (ei, p): 10 GeV 100 GeV 1TeV 10 TeV 100 TeV

(1 Khangulyan et al. 2008;| Bordas et al. 2015)

Enix ~ 90 Ri2 By vy ;" TeV
e Diffusion (e*, p): i

INFC ExpCutont
0455509

iff —-1/2 —-1/2 -
Ertleiax ~ 40 Ry2 By ™ / X1 / TeV g o
e Synchrotron (e*): - 0 f
> —1/2 —1/2 w E
Enox ~ 207,/ B,/ TeV : i
(e.g., Khangulyan et al. 2008; B-R & Khangulyan 2009; o ; FE— o

Takahashi et al. 2009) LS 5039: detected at ~ 100 TeV by HAWC.
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0 Physical processes
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The unshocked pulsar wind

@ The unshocked pulsar wind efficiently comptonizes star photons.
(e.g., Bogovalov & Aharonian 2000; Khangulyan et al. 2008; Cerutti et al. 2008; Sierpowska-Bartosik & Torres
2007; B-R 2021)

(Derishev & B-R, in prep.)
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2007; B-R 2021)

@ Derishev & Aharonian (2012) showed that the converter mechanism
(Derishev et al. 2003; Stern 2003) can operate in compact HMGB via
e*-creation in the unshocked pulsar wind.

(Derishev & B-R, in prep.)
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(e.g., Bogovalov & Aharonian 2000; Khangulyan et al. 2008; Cerutti et al. 2008; Sierpowska-Bartosik & Torres
2007; B-R 2021)

@ Derishev & Aharonian (2012) showed that the converter mechanism
(Derishev et al. 2003; Stern 2003) can operate in compact HMGB via
e*-creation in the unshocked pulsar wind.

@ The wind gets loaded and brakes while providing a '>-boost to new
e* that can reach v ~ 108, which cool little in the unshocked wind.

(Derishev & B-R, in prep.)
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The unshocked pulsar wind

@ The unshocked pulsar wind efficiently comptonizes star photons.
(e.g., Bogovalov & Aharonian 2000; Khangulyan et al. 2008; Cerutti et al. 2008; Sierpowska-Bartosik & Torres
2007; B-R 2021)

@ Derishev & Aharonian (2012) showed that the converter mechanism
(Derishev et al. 2003; Stern 2003) can operate in compact HMGB via
e*-creation in the unshocked pulsar wind.

@ The wind gets loaded and brakes while providing a '>-boost to new
e that can reach y ~ 108, which cool little in the unshocked wind.

@ A 1-100 MeV component arises from postshock synchrotron.

@ This mechanism can explain t,.. ~ E/gBc, 1-100 MeV bumps,
alleviate constraints from the unshocked wind, and heavily
contribute to the global SED.

(Derishev & B-R, in prep.)
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The binary vicinity... =

170002 1.
0.94
@ The shocked flow reaccelerates; |
instabilities and shear layers grow. S0008
> 0
Vector
Ver vap
- -5
1.3
ooosg _to
0.43

. 0.00024
s

Pseudocolor
Var: tho

3.8e+04
[ 7.9e+02

0.34
Trailing edge .
0.0070

1.7
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The binary vicinity...

@ The shocked flow reaccelerates; [
instabilities and shear layers grow. e

@ A strong Coriolis shock forms, »
followed by weaker shocks. Vectar

1.3

Lo
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The binary vicinity...

@ The shocked flow reaccelerates; [
instabilities and shear layers grow. e

@ A strong Coriolis shock forms, »
followed by weaker shocks. Vectar

@ Turbulence and wind mixing leads L
. - - .3

to spiral disruption. N
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The binary vicinity...

The shocked flow reaccelerates;
instabilities and shear layers grow.
A strong Coriolis shock forms,
followed by weaker shocks.
Turbulence and wind mixing leads
to spiral disruption.

Missing: B, stellar clumps, wind

anisotropies, radiation backreaction.

Trailing edge

"
u Leading edge
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The binary vicinity...

The shocked flow reaccelerates;
instabilities and shear layers grow.
A strong Coriolis shock forms,
followed by weaker shocks.
Turbulence and wind mixing leads
to spiral disruption.

Missing: B, stellar clumps, wind
anisotropies, radiation backreaction.

Trailing edge

"
u Leading edge

(B-R et al. 2012, 2015, for low e)

0.94

0.0053
| s
3.0e-05

- _5

1.3
Pty
0.43

- 0.00024

-10-

s

0.6

1.70+02 1.

Coriolis Shock

(see also Huber et al. 2021)
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...and beyond

@ Coriolis shock region: optimal for
acceleration and radiation.

Vector
Var: Vap

7
|
13

087
| ] _10
043

. 0.00024

Trailing edge

VaD Magnitude.
Vab Magnitude.

ude

B S
KRS P

5|
£
2

®
V3D Magritude

i

(B-R et al. 2012, 2015, for low e)
(see also Barkov & B-R 2021)
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...and beyond

@ Coriolis shock region: optimal for
acceleration and radiation

@ Larger scales: energy dissipation
softens, adiabatic losses dominate.

1.3

0.87
| | _10
043

. 0.00024

Trailing edge

VaD Magnitude.

Vab Magnitude.

850401

£ .

2 S B3e01
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-4.0 -3.0 -2.0 . . . N s

(B-R et al. 2012, 2015, for low e)
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(see also Barkov & B-R 2021)
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...and beyond

@ Coriolis shock region: optimal for
acceleration and radiation

@ Larger scales: energy dissipation
softens, adiabatic losses dominate. Vector

@ Radio is a great tool to probe from -
the Coriolis shock outwards. B e

-10-
043

. 0.00024

Trailing edge

VaD Magnitude.
Vab Magnitude.

850401

£ .

2 S B3e01 83e01
et B
-4.0 -3.0 -2.0 . . . N s

(B-R et al. 2012, 2015, for low e)

VD Magritude
V3D Magritude

i3
:
®

(see also Barkov & B-R 2021)
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...and beyond

Coriolis shock region: optimal for

acceleration and radiation

Larger scales: energy dissipation

softens, adiabatic losses dominate. Vector
Radio is a great tool to probe from -
the Coriolis shock outwards. B e
Particles cool adiabatically before oas 10

reaching the ISM. | 0.00024

VaD Magnitude.
Vab Magnitude.

850401

£ .

;;.f . g”
| \

V2

b

Trailing edge

= . = -~ -
S
Leading edge - o Feal w 53001
T el
-do  -3.0 -2.0 R . - b 4 2 ! ‘k! :

(B-R et al. 2012, 2015, for low e)
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(see also Barkov & B-R 2021)
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Forward shuck.

Mainly X-ray evidence.
(Paredes+2007 -LSI-; Durant+2011 -LS-; Pavlov+2015

-PSRB-, Williams+2015 -1FGL-; Kargaltsev+2021 -HESS-;

Albacete-Colombo+2020 -PSRJ- |)

4 . '
-706 600 -500 -400 -300 -200 -100
X [a]

(Barkov & B-R 2018, for high ¢)
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e Concluding
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Final remarks

@ HMGB are perfect for multi-TeV particle acceleration and
high-energy emission radiation.
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Final remarks

@ HMGB are perfect for multi-TeV particle acceleration and
high-energy emission radiation.

@ 1st order factors: synchrotron and IC, radiation reprocessing,
unshocked wind, eccentricity, Doppler boosting, and ED and MHD.

@ Leptonic and hadronic CR injection from the system may be
inefficient due to adiabatic losses.

@ However, large-scale outflow-medium interactions might be
suitable for PeV CR production, as suggested by large scale X-rays.

@ Energetically, as several powerful HMGB are within ~ 1/4 of the
disk, the total power of the population may be > 10%¢ erg —'.
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