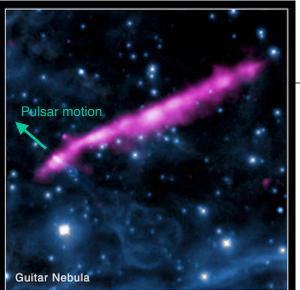


On the X-ray features associated to some bow-shock pulsar wind nebulae

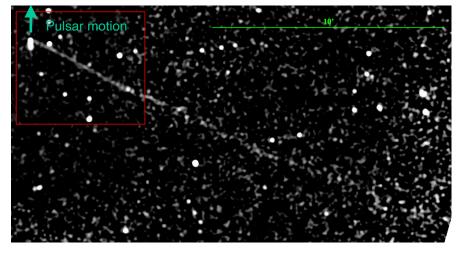

Rino Bandiera Istituto Nazionale di Astrofisica Osservatorio Astrofisico di Arcetri

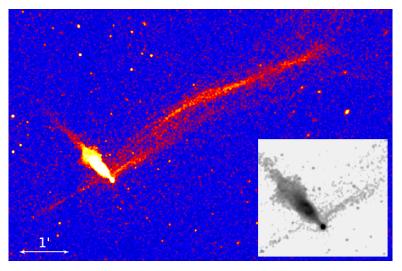
In collaboration with: Barbara Olmi, Elena Amato, Niccolò Bucciantini

Expected, and unexpected, X-ray emission from pulsars supersonically moving in the ISM

- · Pulsars escaped from their birth SNR, but still active
- Pulsar wind nebula confined by the ISM ram pressure. Formation of bow shock.
- Nice bow-shock nebulae in Balmer lines (though with peculiar shapes. Morlino et al. 2015)
- Unfruitful search of X-ray emission in the tail of the Guitar Nebula (bow shock nebula of PSR 2224+65) Romani et al. 1997
- X-ray feature discovered, but in a direction misaligned with the pulsar motion *Hui & Becker 2007*

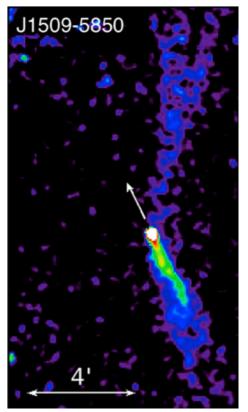
Credit: X-ray: NASA/CXC/UMass/S.Johnson et al, Optical: NASA/STScI & Palomar Obs 5-m Hale Telescope

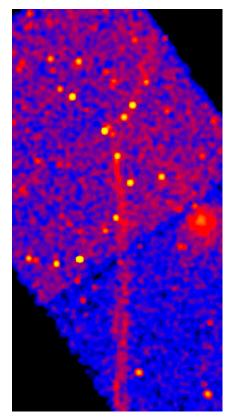



The Guitar Nebula is not alone !

A handful of sources "similar" to the Guitar Nebula:

• IGR J1101-6103 (a.k.a. the Lighthouse Nebula) Pavan et al. 2014, 2016


• PSR J2030+4415 de Vries & Romani 2020



• PSR J1509-5850 Klingler et al. 2016

• PSR J2055+2539 Marelli et al. 2019

• + more dubious cases, like PSR B0355+54 Klingler et al. 2016 or PSR J1135-6055 Bordas & Zhang 2020

Outlining some "general" properties

but small sample, uncertain identifications, faint sources \rightarrow photon noise

- Elongated X-ray feature, misaligned with the pulsar motion
- Highly collimated (in some cases)
- Very small curvature, if any (but, in one case, some wiggling also interpreted as a helical pattern)
- Very hard X-ray spectrum (power-law with typical photon index $\Gamma \sim 1.7$)
- No sign of spectral downgrading with increasing distance from the pulsar
- Presence of a counter-feature (in some cases)
- Co-existence with a "well-behaved" X-ray pulsar tail (in some cases)
- Possible clumps in the structure (just photon noise ?)
- Possibly dimmer emission close to the pulsar (just photon noise ?)

"Ballistic jets" versus "Kinetic jets" Barkov et al. 2019

The Importance of Being Earnest Wilde 1895

Names like "Lighthouse Nebula" or "jet" may imply a subliminal expectation. Better to use a generic term like "feature", until their nature will be fully assessed.

A suggested scenario for the feature in the Guitar Bandiera 2008

- The highest energy electrons may escape from the pulsar bow shock head.
- Then they passively flow along the pre-existing interstellar magnetic field.
- Due to the pulsar motion, electrons continuously fill new magnetic flux tubes.
- Then from the transverse width of the feature one can compute the synchrotron lifetime of the X-ray emitting electrons.
- A magnetic field ~ $45\mu G$ and a particle Lorentz factor $\gamma_e \sim 10^8$ are derived.
- This high magnetic field (~ 1 order of magnitude higher than the interstellar value) implies that electrons may effectively amplify the field, on short scales.

Relativistic MHD 3D models for the electrons escape

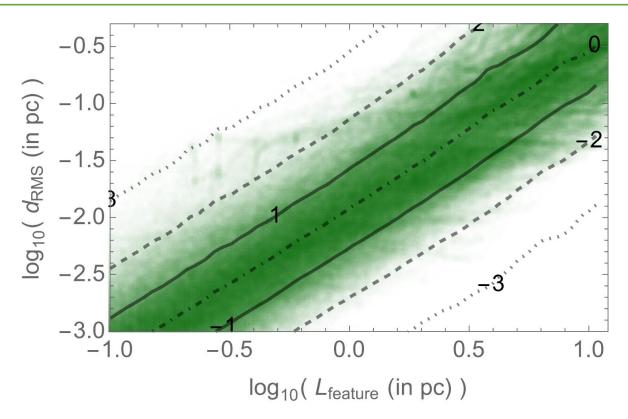
Olmi & Bucciantini 2019; Barkov et al. 2019

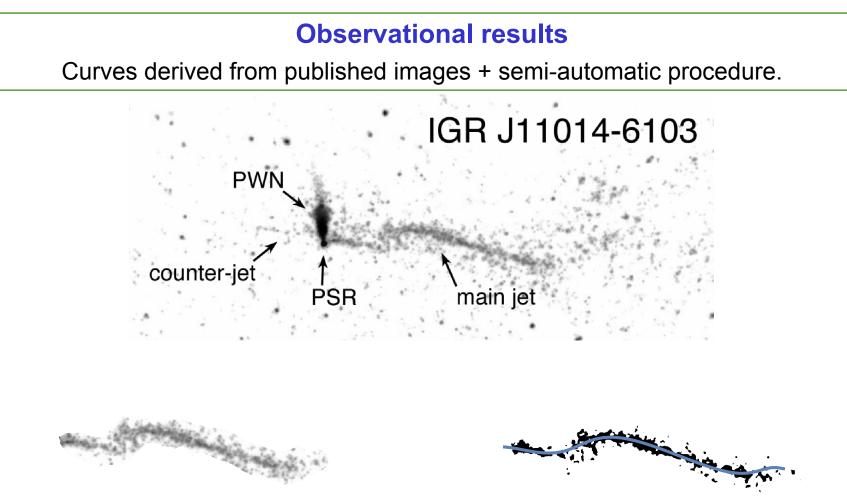
- Confirmed the general scenario proposed by the analytic model.
- Particle escape may be due to magnetic reconnection on the bow shock head.
- Escape of only the highest energy particles. $\gamma > 10^7 \div 10^8$, close to the theoretical limit of the pulsar maximum potential drop.
- Highly asymmetric structures, which justify cases of one-sided features.
- Electrons and positrons follow different orbits. Effective charge separation.
- Charged flows in ambient medium. Possible current driven instabilities. Bell 2004


BUT

- 1. Why some features are almost perfectly straight, while others are bent ? Is this scenario valid for all objects?
- 2. What is the behaviour of these electrons once inside the feature?

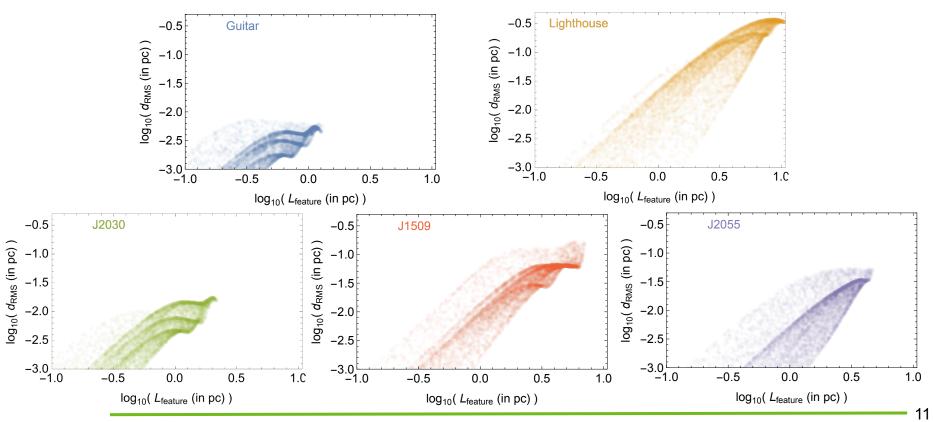
1. Statistical properties of the features bending


- Assume that electrons passively flow along the ambient field.
- Field perturbations simulated with a turbulent power spectrum. Kolmogorov law, scaled to have $\delta B/B \sim 1$ at the maximum scale of the distribution, $L_{\rm max} \simeq 100$ pc. Simulations in 3-D, then projected patterns. Randomly oriented viewing angles.
- THEN Bending more evident in longer features. ($L_{\text{Guitar}} \sim 1.3 \text{ pc}$, $L_{\text{J2030}} \sim 2.2 \text{ pc}$, $L_{\text{J2055}} \sim 4.7 \text{ pc}$, $L_{\text{J1509}} \sim 7 \text{ pc}$, $L_{\text{Lighthouse}} \sim 11 \text{ pc}$)
- ANYWAY Strong differences expected from case to case.

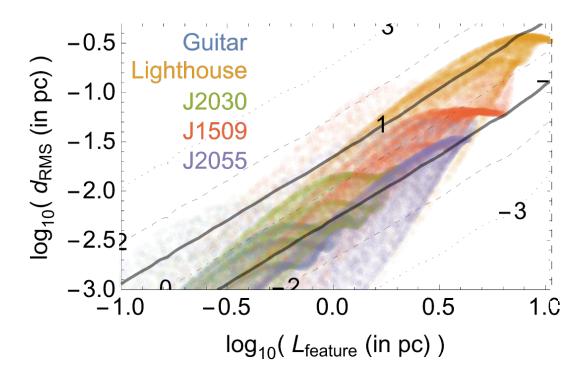


An overall, quantitative approach

- A measurable parameter: RMS dispersion away from the best-fit line.
- Simulated 10^6 measurements. Used to derive theoretical contour lines.



Observational results


- Multiple selection of points \rightarrow a cloud of points from each individual source.
- Possibly inaccurate fit of the shapes BUT sufficient for a Log-Log plot.

Synoptic plot

- NOT A PROOF BUT SIMPLY A CONSISTENCY CHECK
- WITH MORE SOURCES, MORE INFORMATION ON THE B TURBULENCE ?

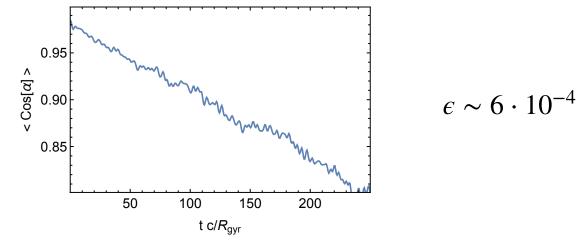
2. Electron evolution inside the feature (WORK IN PROGRESS)

- Very large electron gyration radius: for an ordered $B \simeq 3 \,\mu\text{G}$ and $\gamma \simeq 10^8$ (case of Guitar) one obtains $R_{\rm gyr} \simeq 2 \cdot 10^{-2} \,\mathrm{pc}$, compared to $L_{\rm fea} \sim 1.3 \,\mathrm{pc}$.
- In the case of effective non-resonant instabilities $_{Bell\ 2004},$ turbulent fields (up to $B\simeq 45\,\mu{\rm G}$) at scales smaller than $R_{\rm gyr}$.
- Regime inconsistent with standard MHD orbit theory. Standard diffusion cannot explain observed properties (no spectral downgrading away from the pulsar)

ANSATZ: electrons injected, at a base of the feature, with a small pitch angle

Analytic approach. Defining:
$$\omega_D = \left(\frac{\delta B}{B_{\rm ISM}}\right)^2 \left(\frac{c}{R_{\rm gyr}}\right)^2 \delta t_{\rm coherence}$$

Then: $\frac{d}{dt} \mu[\cos \alpha] = -\omega_D \cos \alpha; \quad \frac{d}{dt} \sigma^2[\cos \alpha] = \omega_D \sin^2 \alpha$



If:
$$\delta t_{\rm corr} = \frac{\epsilon R_{\rm gyr}}{c}$$
 (with ϵ small), then $t_{\rm iso} = \frac{R_{\rm gyr}}{\epsilon c} \left(\frac{B_{\rm ISM}}{\delta B}\right)^2$.

Persistence of small pitch angles for a rather long time.

TOY MODEL

Fluctuations: $\delta B \sim B_{\rm ISM}$; $< k_{\delta B} > = 10/R_{\rm gyr}$; $\sigma(k_{\delta B}) = 0.1 < k_{\delta B} >$ Initial pitch angle $\alpha = 10^{\circ}$. Averaged values (over 100 particles)

PRELIMINARY MODEL • Continuous flow of particles in the ambient field, with initial $\alpha = 0^{\circ}$;

• Field amplification by current driven instabilities,

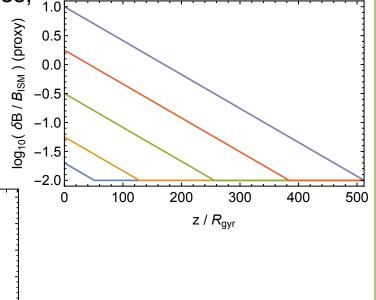
is proportional to exp $\int K \int j(t') dt'$

Proxy used, assuming free flow of particles:

- Orbits simulation (2000 particles).
- Particles slowed down if higher B.

1.0

0.5


0.0

-0.5 -1.0

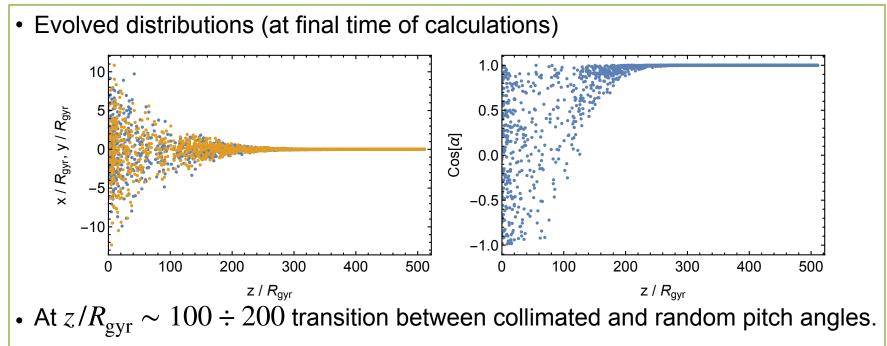
-1.5 -2.0

0

- Lower current. (pol) (MSI g / g / g / g) (derived)

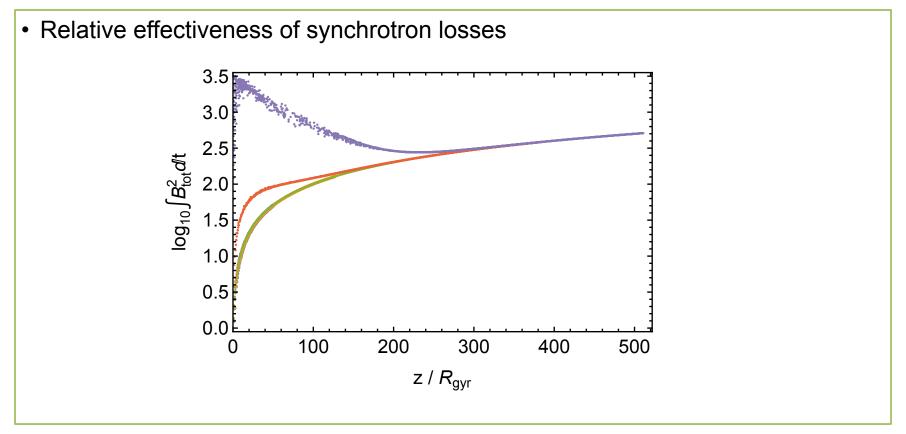
400

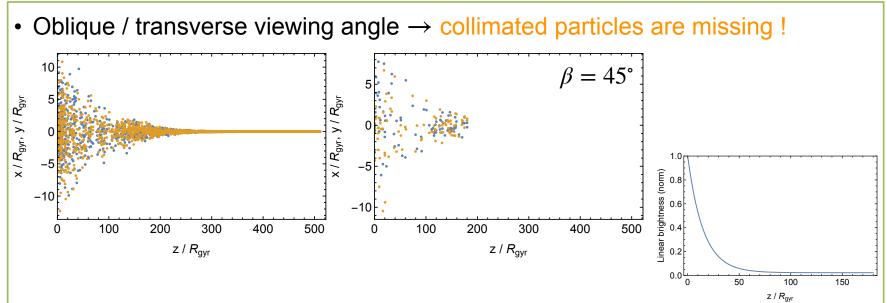
500


300

z / R_{gyr}

200


100



• Particles emitted earlier are further out, and still collimated.

- The physical feature likely extends beyond the maximum detected distance.
- The invisible particles have contributed to the current necessary to the turbulent field amplification.
- Unclear the saturation level of the turbulent magnetic field amplification.

Summary

OSSERVATORIO ASTROFISICO DI ARCETRI

X-ray features associated to pulsar bow shocks

1. Statistical analysis of their curvatures

- Compatible with Galactic turbulence.
- 2. Evolution of particles once injected into the feature
- Fact: very long gyration radii.
- Assumption: they are injected with small pitch angles.
- Dimensionless model (lengths in units of $R_{\rm gyr}$).
- Some promising preliminary results **BUT**:
- Still to perform extended analysis in the parameter space.
- Still to investigate some claimed observational details (e.g. possibly dimmer near the pulsar, possible clumpization).
- Still to compute the maximum field amplification that can be obtained.
- Maybe corrections to our statistical analysis, if visibility is not isotropic.