Survey update

	Criteria for RSD implementation and Verification	Ref． Version： Date： Page：	$\begin{aligned} & \text { EUCL-OAR-RP-8-002 } \\ & 1.2 \\ & 10 / 01 / 2022 \\ & 1 / 171 \end{aligned}$

CRSDIV：Philosophy document

Title：	Criteria for RSD implementation and verification
Reference ：	EUCL－OAR－RP－8－002
Issue ：	1.2
Date ：	$10 / 01 / 2022$
Custodian：	R．Scaramella

MOCD－C：user manual for each survey \＆verification table

	Mission Operation Concept Document part C	Ref． Version Date： Page：	$\begin{aligned} & \text { EUCL-IA-RP-8-001 } \\ & 2.0 \\ & 18 / 01 / 2022 \\ & 1 / 55 \end{aligned}$

Astronomy \＆Astrophysics manuscript no．output November 2，2021
 paper on the wide in press

© CSO 2021

Euclid preparation：I．The Euclid Wide Survey

Euclid Collaboration：R．Scaramella ${ }^{1,2 \star}$ ，J．Amiaux ${ }^{3}$ ，Y．Mellier ${ }^{4,5}$ ，C．Burigana ${ }^{6,7,8}$ ，C．S．Carvalho ${ }^{9}$ ，J．－C．Cuillandre ${ }^{3}$ ，A．Da Silva 10,11 ，A．Derosa ${ }^{12}$ ，J．Dinis ${ }^{10,11}$ ，E．Maiorano ${ }^{12}$ ，M．Maris ${ }^{13,14}$ ，I．Tereno ${ }^{9,10}$ ，R．Laureijs ${ }^{15}$ ，T．Boenke ${ }^{15}$ ，G．Buenadicha ${ }^{16}$ ，

X．Dupac ${ }^{16}$ ，L．M．Gaspar Venancio ${ }^{15}$ ，P．Gómez－Álvarez ${ }^{16,17}$ ，J．Hoar ${ }^{16}$ ，J．Lorenzo Alvarez ${ }^{15}$ ，G．D．Racca ${ }^{15}$ ， G．Saavedra－Criado ${ }^{15}$ ，J．Schwartz ${ }^{18}$ ，R．Vavrek ${ }^{16}$ ，M．Schirmer ${ }^{19}$ ，H．Aussel ${ }^{3,5}$ ，R．Azzollini ${ }^{20}$ ，V．F．Cardone ${ }^{1,2}$ ，M．Cropper ${ }^{20}$ A．Ealet ${ }^{21}$ ，B．Garilli ${ }^{22}$ ，W．Gillard ${ }^{23}$ ，B．R．Granett ${ }^{24}$ ，L．Guzzo ${ }^{24,25,26}$ ，H．Hoekstra ${ }^{27}$ ，K．Jahnke ${ }^{\text {19 }}$ ，T．Kitching ${ }^{20}$ ，T．Maciasze ${ }^{28}$ ， M．Meneghetti ${ }^{12,29}$, L．Miller 30 ，R．Nakajima ${ }^{31}$ ，S．M．Niemi ${ }^{15}$ ，F．Pasian ${ }^{14}$ ，W．J．Percival ${ }^{32,33,34}$ ，S．Pottinger ${ }^{20}$ ，M．Sauvage ${ }^{3}$ ， M．Scodeggio ${ }^{22}$ ，S．Wachter ${ }^{35}$ ，A．Zacchei ${ }^{14}$ ，N．Aghanim ${ }^{36}$ ，A．Amara ${ }^{37}$ ，T．Auphan ${ }^{23}$ ，N．Auricchio ${ }^{12}$ ，S．Awan ${ }^{20}$ ，A．Balestra ${ }^{38}$ R．Bender ${ }^{39,40}$ ，C．Bodendor ${ }^{40}$ ，D．Bonino ${ }^{41}$ ，E．Branchini42，43，S．Brau－Nogue ${ }^{44}$ ，M．Brescia ${ }^{45}$ ，G．P．Candini ${ }^{20}$ ，V．Capobianco ${ }^{46}$ C．Carbone ${ }^{22}$ ，R．G．Carlberg ${ }^{46}$ ，J．Carretero ${ }^{47}$ ，R．Casas ${ }^{48,49}$ ，F．J．Castander ${ }^{48,49}$ ，M．Castellano ${ }^{2}$ ，S．Cavuoti ${ }^{45,50,51}$ ，A．Cimatti ${ }^{52,5}$ R．Cledassou ${ }^{54,55}$ ，G．Congedo ${ }^{56}$ ，C．J．Conselice ${ }^{57}$ ，L．Conversi ${ }^{16,58}$ ，Y．Copin ${ }^{21}$ ，L．Corcione ${ }^{41}$ ，A．Costille ${ }^{28}$ ，F．Courbin ${ }^{59}$ H．Degaudenzi ${ }^{60}$ ，M．Douspis ${ }^{36}$ ，F．Dubath ${ }^{60}$ ，C．A．J．Duncan ${ }^{30}$ ，S．Dusini ${ }^{61}$ ，S．Farrens ${ }^{3}$ ，S． Ferriol 21 ，P．Fosalba ${ }^{48,49}{ }^{29}$ ，
N．Fourmanoit ${ }^{21}$ ，M．Frailis ${ }^{14}$ ，E．Franceschi ${ }^{12}$ ，P．Franzetti ${ }^{22}$ ，M．Fumana ${ }^{22}$ ，B．Gillis ${ }^{56}$ ，C．Giocoli62，63，A．Grazian ${ }^{38}$ ，
F．Grupp ${ }^{39,40}$ ，S．V．H．Haugan ${ }^{64}$ ，W．Holmes ${ }^{65}$ ，F．Hormuth ${ }^{19,66}$ ，P．Hudelot ${ }^{5}$ ，S．Kermiche ${ }^{23}$ ，A．Kiessling ${ }^{65}$ ，M．Kilbinger ${ }^{3}$ ，
O．Mansutti ${ }^{14}$ ，O．Marggraf ${ }^{31}$ ，K．Markovic ${ }^{65}$ ，F．Marulli ${ }^{12,29,52}$ ，R．Massey ${ }^{72}$ ，S．Maurogordato ${ }^{73}$ ，M．Melchior ${ }^{\text {4 }}$ ，E．Merlin ${ }^{2}$
 S．Paltani ${ }^{60}$ ，J．Peacock ${ }^{56}$ ，K．Pedersen ${ }^{76}$ ，V．Pettorino ${ }^{3}$ ，S．Pires ${ }^{3}$ ，M．Poncet ${ }^{55}$ ，L．Popa ${ }^{77}$ ，L．Pozzetti ${ }^{12}$ ，F．Raison ${ }^{40}$ ，R．Rebolo ${ }^{78,79}$ ，

G．Seidel ${ }^{19}$ ，S．Serrano ${ }^{48,49}$ ，C．Sirignano ${ }^{61,80}$ ，G．Sirri ${ }^{29}$ ，J．Skottfelt ${ }^{81}$ ，L．Stanco ${ }^{61}$ ，J．L．Starck ${ }^{3}$ ，P．Tallada－Crespi ${ }^{82}$ ，
D．Tavagnacco ${ }^{14}$ ，A．N．Taylor ${ }^{56}$ ，H．I．Teplit ${ }^{83}$ ，R．Toledo－More ${ }^{84}$ ，F．Torradeflot ${ }^{47,82}$ ，M．Trifoglio ${ }^{85}$ ，E．A．Valentijn ${ }^{86}$ ，
L．Valenziano ${ }^{12,29}$ ，G．A．Verdoes Kleijn ${ }^{86}$ ，Y．Wang ${ }^{83}$ ，N．Welikala ${ }^{56}$ ，J．Weller ${ }^{39,40}$ ，M．Wetzstein ${ }^{40}$ ，G．Zamorani ${ }^{12}$ ，J．Zoubian ${ }^{23}$ ， S．Andreon ${ }^{24}$ ，M．Baldi ${ }^{12,29,52}$ ，S．Bardelli ${ }^{12}$ ，A．Boucaud ${ }^{87}$ ，S．Camera ${ }^{41,88,89}$ ，D．Di Ferdinando ${ }^{6}$ ，G．Fabbian ${ }^{90,91}$ ，R．Farinelli ${ }^{85}$ ， S．Galeotta ${ }^{14}$ ，J．Gracía－Carpio ${ }^{40}$ ，D．Maino ${ }^{22,25,26}$ ，E．Medinaceli ${ }^{62}$ ，S．Mei ${ }^{87}$ ，C．Neissner ${ }^{47}$ ，G．Polenta ${ }^{92}$ ，A．Renzi ${ }^{61,80}$ ，
E．Romelli ${ }^{14}$ ，C．Rosset ${ }^{87}$ ，F．Sureau ${ }^{3}$ ，M．Tenti ${ }^{29}$ ，T．Vassallo ${ }^{39}$ ，E．Zucca ${ }^{12}$ ，C．Baccigalupi $1^{13,14,93,94}$, A．Balaguera－Antolínez ${ }^{78,79}$ P．Battagia ${ }^{85}$ ，A．Biviano ${ }^{13,14}$ ，S．Borgani ${ }^{13,144,94,95}$ ，E．Bozzo ${ }^{60}$, R．Cabanac ${ }^{44}$ A．A．Cappi ${ }^{12,73}$ ，S．Casas ${ }^{3}$ ，G．Castignanni ${ }^{52}$ ，
M．Farina ${ }^{97}$ ，P．G．Ferreira ${ }^{30}$ ，F．Finelli ${ }^{6,85}$ ，P．Flose－Reimbers ${ }^{5}$ ，S．Fotopoulou ${ }^{98}$ ，K．Ganga ${ }^{87}$ ，G．Gozalias1 ${ }^{99,100}$ ，I．M．Hook ${ }^{101}$ ，
Farina ${ }^{97}$ ，P．G．Ferreira ${ }^{30}$ ，F．Finelli6，85，P．Flose－Reimberg，S．Fotopoulou ${ }^{98}$ ，K．Ganga ${ }^{87}$ ，G．Gozalias ${ }^{99}$ ，${ }^{900}$ ，I．M．Hook
E．Keihanen ${ }^{100}$ ，C．C．Kirkpatrick ${ }^{69}$ ，P．Liebing ${ }^{20}$ ，V．Lindholm ${ }^{100,102}$ ，G．Mainetti ${ }^{103}$ ，M．Martinelli ${ }^{104}$ ，N．Martinet ${ }^{28}$ ，
M．Maturi ${ }^{105,106}$ ，H．J．McCracken ${ }^{107}$ ，R．B．Metcalf ${ }^{52,85}$ ，G．Morgante ${ }^{12}$ ，J．Nightingale ${ }^{108}$ ，A．Nucita ${ }^{109,110}$ ，L．Patrizii ${ }^{29}$
D．Potter ${ }^{111}$ ，G．Riccio ${ }^{45}$ ，A．G．Sánchez ${ }^{40}$ ，D．Sapone ${ }^{112}$ ，J．A．Schewtschenko ${ }^{37}$ ，M．Schultheis ${ }^{73}$ ，V．Scottez ${ }^{5}$ ，R．Teyssier ${ }^{111}$ I．Tutusaus ${ }^{48,49}$ ，J．Valiviita ${ }^{102,113}$ ，M．Viel ${ }^{13,14,93,94}$ ，W．Vriend ${ }^{86}$ ，L．Whittaker ${ }^{57,70}$
（Affiliations can be found after the references） Received August XXXX，2021；accepted XXXX， 2021

ABSTRACT

Euclid is a mission of the European Space Agency，designed to constrain the properties of dark energy and gravity via weak gravitational lensing and galaxy clustering．It will carry out a wide area imaging and spectroscopy survey（the Euclid Wide Survey：EWS）in visible and near infrared bands，covering approximately $15000 \mathrm{deg}^{2}$ of extragalactic sky on six years．The wide－field telescope and instruments are optimized for pristine PSF and reduced straylight，producing very crisp images．
This paper presents the building of the Euclid reference survey：the sequence of pointings of EWS，Deep fields and Auxiliary fields for calibrations， and spacecraft movements followed by Euclid as it operates in a step－and－stare mode from its orbit around the Lagrange point L2
Each EWS pointing has four dithered frames；we simulate the dither pattern at pixel level to analyse the effective coverage．We use up－to－date models for the sky background to define the Euclid region－of－interest（RoI）．The building of the reference survey is highly constrained from calibration cadences，spacecraft constraints，and background levels；synergies with ground－based coverage are also considered．Via purposely－ built software，we first generate a schedule for the Auxiliary and Deep fields observations．On a second stage，the RoI is tiled and scheduled with EWS transit observations，with an algorithm optimized to prioritize best sky areas，produce a compact coverage，and ensure thermal stability．
The reference survey RSD 2021A is the optimized result of a modern survey design．It fulfills all constraints and is a good proxy for the f The reference survey RSD＿2021A is the optimized result of a modern survey design．It fulfills all constraints and is a good proxy for the final
solution．The current wide survey covers ≈ 14500 deg 2 ．The limiting AB magnitudes（ 5σ point－like source）achieved in its footprint are estimated to be 26.2 （visible）and 24.5 （near infrared）；for spectroscopy，the H_{α} line flux limit is $2 \times 10^{-16} \mathrm{erg}^{-1} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ at 1600 nm ；and for diffuse emission the surface brightness limits are 29.8 （visible）and 28.4 （near infrared）mag arcsec
Key words．cosmology－space vehicles－dark matter－dark energy－survey－all sky

Custodian：
18／01／2022

Title：	Mission Operation Concept Document part C
Reference ：	EUCL－IA－RP－8－001
Issue ：	2.0
Date ：	$18 / 01 / 2022$
Custodian：	Ismael Tereno

| | | Mission Operation Concept |
| :--- | :---: | :--- | :--- |
| Document part C | Ref.
 Version:
 Date:
 Page: | EUCL-IA-RP-8-001
 2.0
 Pu/lid
 $55 / 55$ |

Verification of calibration implementation

Calibration Requirements for Routine Operations
(CIRRO)

Contents

1 INTRODUCTION
2 CALIBRATION REQUIREMENTS 4
CALBLOCK-F-001
CALBLOCK-F-002 CALBLOCK-F-003 CALBLOCK-F-004 CALBLOCK-F-005 CALBLOCK-F-006 CALBLOCK-F-007 CALBLOCK-F-008 CALBLOCK-F-009 CALBLOCK-F-010 CALBLOCK-F-011 CALBLOCK-F-012A Pattern for Self Cal

B Stadium Shape 11
C VIS PSF Calibration Targets 12
D Planetary Nebula Calibration Targets

2 CALIBRATION REQUIREMENTS

CALBLOCK-F-001
Observe the Self Cal pattern of points regularly, at a give cadence. The Self Cal pattern is made of 60 pointings (listed in appendix A). A single pass of observation of a pattern is made by centering the FoV with each pointing.
Pointings of a single pass must be all observed with the same, arbitrary, orientation.
 Pointings of a pass may be observed in any order. The pattern must be observed at a cadence of 25 to 40 days. Schedule time allocation is [1012] seconds, per pointing.
Note 1: Orientation of a pass may be chosen to suite the pass average timestamp. Note 2: The 60 pointings of the pattern are clustered in groups of 4, around the Self Cal centre (R.A./DEC of 268.625, +65.600).

Observe the three deep fields repeatedly, up to 6 times the S / N of the average wide survey. The deeps fields are: deep-field north (EDFN), deep-field south (EDFS), and survey. The deeps fields are: deep-field north
deep-field Fornax (EDFN). Each pass must observe a deep field completely, covering the fields shape with a tessellated pattern (with no inner holes). Fields in the tessellated pattern must overlap the same amount as in the wide survey (see MOCD-A). The shape, centre, and number of passes required for each deep-field are given by:

Field	shape	R.A	Dec	passes						
EDFN	$10 \mathrm{deg}^{2}$ circle	269.7372	66.025	30						
EDFS	$23 \mathrm{deg}^{2}$ stadium	66.7876	-49.582	35						
EDFF	$10 \mathrm{deg}^{2}$ circle	52.9386	28.104	52		EDFF	$10 \mathrm{deg}^{2}$ circle	52.9386	28.104	52
:---	:---	:---	:---	:---	(see appendix B for description of stadium shape)					

The total observed area of the deep-fields must grow at the same (approximate) pace
as the total area of the wide survey.
Schedule time allocation is [\{22\}996-996-996-1006] seconds, (ROS), per pointing.
CALBLOCK-F-003 Observe two CPC fields 10 times each, at constrained orientations. The CPC fields are the CPC-north (CPC-N) and the CPC-south (CPC-S). Each pass must observe the CP Fields in the tessellated pettern must overlap the sam a (see MOCD-A). The shape, ce

Field	shape	R.A	Dec	passes
CPC-N	$20 \mathrm{deg}^{2}$ circle	269.7372	66.025	10
CPC-S	$23 \mathrm{deg}^{2}$ stadium	66.7876	-49.582	10

(see appendix B for description of stadium shape) 6 years + blinding star file

Survey status at MKP

Inputs: MOCD-A, CalF

We have a complex machine with solutions which are able to meet all constraints on:

- SNR (use models for backgrounds)
- S/C angles
- dithers
- SOP time
- smooth changes of S/C attitude

Verify in PV: SNR, number counts etc

- calibrations
- deep fields
- auxiliary fields
- 96% of the wide (~14350 sq deg)

Over the years a large decrease in the time available for the wide: $\Delta t=-9 \mathrm{mo} \Rightarrow-2700 \eta \mathrm{sq}$ deg, $\eta<1$

Latest System estimates

Better than required:

Table 7: SNR statistics for the RoI, for each channel: VIS band (boldface values refers to extended objects), NIR bands (Y, J, H, values refer to point like objects) and red grism band, S (italic values in the last column refer to $0^{\prime \prime} .5$ diameter sources). The median depth here is evaluated for 5σ point-like source.

	VIS	Y	J	H	S
Minimum SNR	$\mathbf{1 0 . 0}$	5.0	5.7	5.7	3.2
Median SNR	$\mathbf{1 5 . 9}$	6.5	7.8	7.2	4.5
Maximum SNR	$\mathbf{1 9 . 8}$	7.8	9.0	8.5	6.6
Median depth [AB mag]	26.2	24.3	24.5	24.4	-

e.g. VIS on average is half mag deeper

Avoid blinding stars (m<4)
standard tiling, whole tile lost
optimised tiling with local overlaps and recenter of tiles
J. Dinis

First optimise calibrations, + deep and auxiliary fields for sample characterisation then fill in wide (J. Dinis, I.Tereno)

More work to do on PSF cadence, rest OK

time: 2/3 on wide survey, 1/3 on rest

time for

- instrument calibrations: 5\%
- Deep fields: 11\%
- Auxiliary fields: 4\%
- SOP: 2 \%

- unallocated: 13\%

EDFs status

 will be increased to compensate for larger zodiacal background)- EDFN $(20 \times 10+$ inner $10 \times 30)=(1 / 2)$ CPC + (1/4) DEEP; offset 1 deg from NEP; observed by Spitzer
- EDFF (10 x 40) = (1/4) DEEP; Fornax region; observed by Spitzer; Rubin drill field
- EDFS $(23 \times 40)=(1 / 2) \mathrm{CPC}+(1 / 2)$ DEEP; observations done for Spitzer; Rubin optical coverage requested

CPC visits are counted also as EDF visits 75% synergy between CPCs and EDFs

After one year can have 1 visit (all red spectra) on both CPC + EDF-F = 50 sq degs for Q1 release

IF blue grism also needed for CPC (likely) then increase EDF-N to 20 sq deg [what if scenario \#1: no harm to final wide area!!]

The rise of unallocated time, due to lack of Rol areas at given longitudes

because telescope can be flipped from l and look at $l+\pi$

ROT

$6^{\text {th }}$
$5^{\text {th }}$
${ }_{3}^{1}$ nd $<$
${ }^{15 t}$ year no problem
yellow: RoI care not covered within 6 yrs

From $3^{\text {nd }}$ year onwards
blue line: folded Rol area for longitude red line: wide area that could be observed
some longitudes hove no longer new RoI areas to observe
\rightarrow rise of unallocated time
as of today (end of 2021) this is gmonths total ($21 / 8$ of whole)

RSD 2022A

now cover 96\% of target wide area; OK if for $15,000 \mathrm{sq}$ deg the expected FoM > 418

Lack of avaitiable wide areas
~ 9.5 months to be allocated

yearly quality of fields: $: 0$ n average best areas first
R. Scaramella—Survey— EC-ITA—23 February 2022

Figure of Merit \propto wide Area

More than 10 years ago:
Figure of Merit $\sim 400 \Rightarrow$ wide Area 15,000 sq deg

Since:

better theory and Xcorrs increase the FoM

- to consider systematic effects (very difficult) decreases the FoM

To cover 96% of that area is a problem? Maybe...

\Rightarrow wait for SPV3 !!

Carbone, Cardone, Sapone

RSD 2022a ECTile realization of a Euclid Wide Survey within the $17 \mathrm{Kdeg} .{ }^{2}$ Rol : 14,357 deg. ${ }^{2}$ over 6 years in 251 patches \square Euclid Region of Interest (RoI) : 17 Kdeg. ${ }^{2}$ core science compliant, with 795 blinding spots skipped [black dots]

ーㅡ Best $1300 \mathrm{deg}^{2}{ }^{2}$ (white) SNR areas per galactic cap
\square Euclid Deep Fields (EDF, from north to south): $10+10+23$ deg. ${ }^{2}$

Euclid Wide Survey chronology (2.5Kdeg. ${ }^{2} / \mathbf{y r}$)

Year1 Year2 Year3 Year4 Year5 Year6

T © © © ©
Background image: Euclid Consortium / Planck Collaboration / A. Mellinger

RSD_2022A, several changes in inputs implemented

What if scenarios: perturb 2022A

Idea: synchronise ad "hoc" non recurrent long calibrations (decontaminetions + -if - $P D C$) in those days $\simeq \Delta l$ which will give rise to unallocated periods. In practice delay completion of RoIl (l^{\prime}) but keep total area the same

This will leave less "free" time for community non core proposals \Rightarrow but cone mission has priority so it's ok

WIF \#1: extend EDF-N to 20sq deg

WIF \#1 excellent result: same wide area, use of unallocated time only (1 mo); likely the new reference
WIF \#2: add 3 decontamination periods of 25 days (year $1,3,5$) during inefficient longitudes (=in unallocated time)
WIF \#3: add 3 decontamination periods of 25 days (year $1,3,5$) during efficient longitudes (=max damage)

Proposal to the EST to extend the EDF-N area to cover the CPC-N using unallocated periods
R. Scaramella - EST Survey Scientist
(with contributions from ECSURV, CALWG, SWGs ubercoords, ILS, blue grism group)

Summary

The present baseline for the Euclid core mission foresees to cover a wide survey (greater than 15,000 square degrees extra-galactic sky) observed at least once, plus a minimum of 40 square degrees of deep survey subdivided in two or more fields in separated hemispheres (currently 3 fields), visited several times. Because of the many severe pointing constraints, during the core mission there are several periods (currently for a total of ~ 10 months) in which one cannot observe areas which are good enough for the wide survey, corresponding to what is called "unallocated" (yet) time

An excellent use of 1 month of that time, a mere 10%, would be to observe the always visible NEP region, extending the EDF-N (actually planned to be 10 square degree) to the same area of the cocentered CPC-N (20 square degrees). This increase in size for the EDF-N is fully within the scope and mandate of the main mission and is highly beneficial for both the core and the legacy science. Especially, it doubles the area covered by the blue grism in the NEP region, allowing full rather than partial coverage of the CPC with the blue grism. Moreover, because this proposed enlargement would use exactly the same standard modes of operations, pointing etc as in the core mission, there is no negative impact on the satellite, nor on operations, nor on the total wide area that can be observed.
What IF\#1 = 20sq deg EDF-N
EDF-N $\rightarrow 20$ sqdeg allows the whole CPC to have blue grism observations

The needed ΔT is completely filled by otherwise unallocated time

Likely the new reference

Cadence of the EDFs in the two cases

RSD2022A: 10 sq deg EDF-N

RSD2022B: 20 sq deg EDF-N

R. Scaramella—Survey— EC-ITA—24 February 2022

An additional complication

The actual survey (wide \& deep \& auxiliary fields) might need to start later than the end of PV phase so to complete the first Phase Diversity Calibration [needed Δt still TBC].
This is mandatory for the full PSF characterisation needed by the WL.
This late start for std operations would negatively impact the final area.

