VINCENZO F. CARDONE WEAK LENSING

V Euclid Italia Meeting - 24 Febbraio 2022

Current WLSWG Activities ONLY THOSE WITH ITALIAN PARTICIPATION

- Forecasts for extended models (jointly with TWG)
- E2E pipeline to evaluate the impact of systematics
- High Order Statistics (HOWLs Key Project)
- Weak Lensing simulations (see Carlo Giocoli talk)

Forecasts for MG scale independent models

- three cases: DGP, JBD, k mouflage
- two different sets of fiducial parameters
 - consistent with Planck data
 - \circ quasi LCDM
- 3x2pt + GCsp
 - quasilinear/nonlinear
 - pessimistic/optimistic
 - single/joint

FORECASTS FOR DARK MATTER

- massive neutrinos (both in GR and MG)
- particle dark matter
- generlised dark matter models
- primordial black holes

SUPER SAMPLE COVARIANCE

- impact of SSC on 3x2pt forecasts
- included in 6x2pt forecasts (see M. Carbone talk)
- Gaussian + SSC covariance (see C. Giocoli talk)

ITALIAN PARTICIPATION

- Giocoli, M. Martinelli, F. Pace, G. Parimbelli, D. Sciotti
- WP leads: Maria Archidiacono, Stefano Camera • Key Project Paper leads: M. Bonici, D. Sciotti • Participating: M. Bonici, C. Carbone, V.F. Cardone, C.

AIM

evaluate the impact of residual systematics

METHOD

emulate moments estimate adding systematics

REMOVE

I

use a fiducial model to remove sys systematics pe

PERTURB

BIAS

remove systematics with a perturbed model compare with the correct model and find bias

ITALY AND E2E

fiducial and perturbed model for color gradient bias correction

CG BIAS

wavelength dependent PSF and spatially varing galaxy SED

CALIBRATION

method tested on simulated galaxies and validated on HST images

CG GALAXY

emulate analytic galaxy according to a B+D model

EUCLIDIZE

simulate galaxy as would be detected by Euclid VIS

NO CG GAL

same shape but without spatially k varying SED

SHEAR

apply shear to both galaxies and measure shape

BIAS

compare the shape to measure CG bias

Color Gradient Bias Calibration

Italian members: V.F. Cardone, M.A. Raj, R. Maoli, R. Scaramella, C. Tortora

CG BIAS PIPELINE

input galaxy model from RAGE catalog
PSF and noise as for Euclid VIS
simulate galaxies with GalSim
different shape measurement methods

CG BIAS CORRECTION

CG bias as function of (S/N, z, log L)
radial basis function interpolation
fullfilling Euclid requirements
validation in course with HST galaxies

HOWLS - Higher Order Statistics in Weak Lensing

- Key Project of the WLSWG
- Joint project of the Mass Mapping and High Order Statistics WP
- Also involves WL Simulations WP (see C. Giocoli talk)

DATA VECTORS

14 different datasets9 HOS probes7 teams participating

FORECASTS

Numerical ders Covariances Fisher matrix

Order Statistics WP ocoli talk)

HOWLS in four steps

SIMULATIONS

- 14 different cosmologies with DUSTGRAIN
- 928 LCDM maps from SLICS
- shear catalogues
- convergence maps with Euclid KS code

MEASUREMENT

- Betti numbers
- Convergence PDF
- Homology heatmaps
- Mass aperture 3pCF
- Minkowski functionals
- Scattering transform

DERIVATIVES

FORECASTS

Italian members: M. Baldi, M. Carbone, V.F. Cardone, C. Giocoli, M. Vicinanza, S. Vinciguerra

• 3 points stencil with 4% step • 3 points stencil with 16% step • linear unweighted fit • linear weighted fit

• three parameters varied (Om, w0, sigma8) • Fisher matrix method covariance matrix from SLICS sims • checking whether the likelihood is Gaussian • impact of sampling and specifics cut • estimate of errors on errors

HOWLS - Fisher Matrix Forecasts

Tabl from kurta

e 1: HOWLS	1: HOWLS step 3 forecasts for <i>Euclid</i> mocks rescaled to a 15000 deg ² area. Covariance computed										Table 5: Same as Table 2 for probed combined with shear2PUF_Nicolas.						
924 SLICS	realizations, model	from 12	28×6 DUSTGRAIN r	ealizations.	Only bin	with skewness	and here the last				cosmo	configuration	scale	probes	δw_0	$\delta \sigma_8$	$\delta \Omega_{\rm m}$
be 1 without the skewness/kurtosis cut.											16 %	ks_nomask_shear	—	shear2PCF_Nicolas	3.11 %	0.39~%	0.52~%
cosmo	configuration	scale	probes	δw_0	$\delta \sigma_8$	$\delta \Omega_{\rm m}$	probes	δw_0	$\delta \sigma_8$	$\delta \Omega_{\rm m}$						0.37~%	0.50~%
16 %	ks_nomask_shear	2.34	Minkowski_Simone	1.93 %	0.63 %	1.34 %	Minkowski_Simone	1.51~%	0.54~%	1.17~%	16~%	ks_nomask_shear	2.34	Minkowski_Simone	1.05~%	0.29~%	0.42~%
					0.55 %	1.12~%	_	—	0.49~%	1.04 %						0.29~%	0.40~%
16 %	ks_nomask_shear	2.34	Betti_Simone	2.64 %	1.15 %	2.30 %	Betti_Simone	2.15~%	0.86~%	1.68~%	16 %	ks_nomask_shear	2.34	Betti_Simone	1.30~%	0.30~%	0.44 %
_	_	_	_	_	0.79~%	1.50 %		—	0.67~%	1.26~%	_	_	_	_	—	0.30~%	0.43 %
16 %	ks_nomask_shear	2.34	Peaks_Sandrine	17.99~%	3.88 %	7.93 %	Peaks_Sandrine	1.30~%	0.40~%	0.73~%	16 %	ks_nomask_shear	2.34	Peaks.Sandrine	1.05~%	0.25~%	0.42~%
					2.32~%	4.34 %	—	—	0.33~%	0.65 %						0.22~%	0.36~%
16 %	ks_nomask_shear	4.69	PDF_Cora	_	_	_	PDF_Cora	1.17~%	0.46~%	0.77 %	16 %	ks_nomask_shear	4.69	PDF_Cora	0.90 %	0.29~%	0.42~%
							—	—	0.45~%	0.70~%	_	_	_	_	_	0.29~%	0.41~%
16 %	ks_nomask_shear	_	kappa2PCF_Simone	93.47 %	22.51~%	26.09 %	kappa2PCF_Simone	3.68~%	0.78~%	1.07~%	16 %	ks_nomask_shcar		kappa2PCF_Simone	2.71~%	0.36~%	0.44 %
_	_	_	_	_	1.81 %	3.11 %		—	0.56~%	0.92~%	_	_	_	-	_	0.32~%	0.44 %
16 %	ks_nomask_shear	2.34	Moments_Simone				Moments_Simone	2.79~%	0.33~%	1.19~%	16 %	ks_nomask_shear	2.34	Moments_Simone	1.42~%	0.21 %	0.35~%
							—	—	0.30~%	0.70%	_	—	_	—	-	0.21~%	0.34~%
16 %	ks_nomask_shear	4.69	Moments_Cora	_	_	_	Moments_Cora	2.68~%	0.27~%	1.09~%	16 %	ks_nomask_shear	4.69	Moments_Cora	1.36~%	0.17~%	0.31~%
_	_	_	_	_	_	_	—	—	0.25~%	0.65%	_	—	_	—	_	0.16~%	0.30 %
16 %	ks_nomask_shear	2.34	ST_Sihao	7.18 %	$2.02 \ \%$	4.26 %	ST_Sihao	2.51~%	0.63~%	1.23~%	16 %	ks_nomask_shear	2.34	ST_Sihao	1.54~%	0.29~%	0.47 %
_	_	_	_	_	1.72~%	3.64 %			0.44~%	0.74~%	_	-			-	0.28~%	0.41~%
16 %	ks_nomask_shear		shear2PCF_Nicolas				shear2PCF_Nicolas	3.11~%	0.39~%	0.52~%	16 %	ks_nomask_shear	_	Map3_LailaSven	1.16~%	0.26~%	0.44~%
							—		0.37~%	0.50~%						0.19~%	0.32~%
16 %	ks_nomask_shear	_	Map3_LailaSven	_	_	_	Map3_LailaSven	3.77~%	1.15~%	2.65%	16 %	ks_nomask_shear	2.34	Betti_Sven	1.07~%	$0.24 \ \%$	0.40~%
_	_	_	· _	_	_	_	—	—	0.73~%	1.56~%	-	-	-	-	-	0.22~%	0.35~%
16 %	ks_nomask_shear	2.34	Betti_Sven	2.52~%	0.77 %	1.49 %	Betti_Sven	1.32~%	0.39~%	0.73~%	16 %	ks_nomask_shear	2.34	Heatmap_Sven	1.12~%	0.31~%	0.47~%
_	_	_	_	_	0.67~%	1.37~%			0.34~%	0.64~%						0.29~%	0.42~%
16 %	ks_nomask_shear	2.34	Heatmap_Sven	10.67~%	5.84 %	6.94 %	Heatmap_Sven	1.50~%	0.72~%	1.14~%	16 %	ks_nomask_shear	_	Map_Lucas	0.94~%	0.19~%	0.32~%
_			_	_	5.65 %	6.92~%	—	—	0.57~%	0.89%	_	—		_		0.13~%	0.24~%
16 %	ks_nomask_shear	_	Map_Lucas	8.40 %	4.00 %	7.68 %	Map_Lucas	1.24~%	0.24~%	0.41~%							
_	_	_	_	_	2.80 %	5.65 %	—	-	0.15~%	0.33 %							

• single probes: no HOS tool particularly better than the others

- HOS + shear 2PCF: up to a factor 2 improvement of the error on w0
- some additional work needed to optimise binning and smooting

From Noise in Derivatives to Errors on Errors

Marginalized errors

$$\sigma^2 (\Omega_{\rm M}) = \frac{F_{22} F_{33} - F_{23}^2}{\det (F)} \qquad \sigma^2 (W_0) = \frac{F_{11} F_{33} - F_{13}^2}{\det (F)}$$

- Fisher matrix elements (i = {1, 2, 3} for $\{\Omega_M, w_o, \sigma_8\}$) $F_{ij} = \left(\frac{\partial D_{HOS}}{\partial p_i}\right)^T \cdot \Psi \cdot \left(\frac{\partial D_{HOS}}{\partial p_i}\right)$
- $D_{HOS} = HOS$ data vector, $\Psi = \{Cov[D_{HOS}]\}^{-1}$ (inverse covariance)
- Derivatives from 3pt stencil method •

$$\frac{\partial D_{HOS}}{\partial p_{i}} \simeq \frac{D_{HOS} \left[p_{i}^{fid} \left(1 + \epsilon \right) \right] - D_{HOS} \left[p_{i}^{fid} \right]}{2 \epsilon p_{i}^{fid}}$$

$$Cov\left(\frac{\partial D_{HOS}}{\partial p_{i}}\right) \simeq \frac{Cov\left\{D_{HOS}\left[p_{i}^{fid}\left(1+\epsilon\right)\right]\right\} + Cov\left\{D_{HOS}\left[p_{i}^{fid}\right] + Cov\left\{D_{HOS}\left[p_{i}^{fid}\right] + Cov\left\{D_{HOS}\left[p_{i}^{fid}\right] + Cov\left(D_{HOS}\left[p_{i}^{fid}\right] + Cov\left(D_{HOS}\left[p_{i}^{f$$

(assuming approximately model independent covariance matrix)

From Noise in Derivatives to Errors on Errors

- 1. generate random $dD_{\mu os}/dp_i$ from multinormal distribution 2. compute $\{F_{11}, F_{12}, F_{13}, F_{22}, F_{23}, F_{33}\}$ 3. estimate covariance matrix of $\{F_{11}, F_{12}, F_{13}, F_{22}, F_{23}, F_{33}\}$
- Errors on Fisher matrix elements $\{F_{11}, F_{12}, F_{13}, F_{22}, F_{23}, F_{33}\}$
- Errors on marginalized errors
 - 1. generate random F_{ii} from multinormal distribution
 - 2. remove unphysical samples (e.g, giving det(F) < 0)
 - 3. compute $C_{11} = \sigma^2(\Omega_M)$, $C_{22} = \sigma^2(w_0)$, $C_{33} = \sigma^2(\sigma_8)$
 - 4. estimate $\delta[\sigma(p_i)/p_i] = (1/2) \sigma(c_{ii})/c_{ii}$ from sample NMAD
- Underlying assumptions of the method
 - 1. unbiased numerical derivatives
 - 2. cosmology independent covariance matrix

From Noise in Derivatives to Errors on Errors

Italy and Euclid Weak Lensing (AND DO NOT FORGET PHOTOMETRIC GALAXY CLUSTERING)

THEORY

- strong involvement in forecasts
- stronger in next MCMC forecasts
- leading the work on covariance
- leading the 3x2pt modelling
- involved in many Key Projects

SYSTEMATICS

- participation to the E2E pipeline
- impact of magnification bias
- modelling of RSD in 3x2pt
- impact of photo z errors
- modelling of systematics

beline as

HIGH ORDER STATS

- coordinating HOS WP
- strong involvement in HOWLS
- stronger for next steps
- semi analytical methods
- full sky simulations