

Instrument Operations 23 febbraio, 2022 5° Meeting Euclid ITA

- IOT Activities & Tools
 - ICR Tool E. Romelli, D. Tavagnacco
 - IODA G. Riccio, M. Brescia, S. Cavuoti

Euclid Instrument Operations

- 1. Simple, repetitive and replicated for every stage in the S/C observation strategy, a set of calibration and science exposures repeated, at various frequencies, thousands of times over the course of the mission
- 2. Ideally, the **Survey defined at Launch should be the one valid** for the rest of the mission

3. However...

- Assumptions on performance have to be reassessed with System In Flight
- Unknown systematics may appear
- Room for optimization may be found (i.e. Calibration Strategy)
- Instrumental or System problems found
- 4. Beyond those "global" changers, punctual operational problems may hinder execution of parts of the defined Survey. May need local alterations.
- 5. Key is Survey monitoring

IOT Activities

1. Routine Activities - mostly tested during SOVT-1

_	Daily operations	Health assessment & reports	- IODA
_	Long term activities	Trend & reports	- IODA
—	Planning operations	Instrument Commanding Requests	- ICR Tool
_	Calibration	Process & evaluate calibration obs	- IODA
		Implement new calibrations requests	- ICR Tool
		Update routine calibration plan	
—	Maintenance activities	Database maintenance	
		Flight ops procedures maintenance	
		OBSW maintenance	
		CALF, EGSE, IOT system maintenance	

IOT The ICRTool

Erik Romelli & Daniele Tavagnacco SDC-IT

5° Meeting Nazionale Collaborazione Euclid

IOT_ICRTool in a nutshell

IOT_ICRTool in a nutshell

ICRTool: provides a user interface to:

- **Handle sequences and parameters**
- **Create the ICR as agreed in the IOT-SOC ICD**
- **Export the ICR as XML file**

IOT_ICRTool in a nutshell

ICR: Instrument Commanding Request

- **Gamma** Set of instructions for the spacecraft instruments
- □ The mechanism by which IOT may ask for activities not covered by the Reference Survey Definition.
- XML file containing sequences of parameters and their values, needed to perform a specific Activity

Redmine page: <u>https://euclid.roe.ac.uk/projects/icrtool/wiki</u>

GitLab project: https://gitlab.euclid-sgs.uk/SDC-IT/iot_icrtool

EUCL-OTS-DDD-8-007: <u>https://euclid.roe.ac.uk/dmsf/files/11968/view</u>

Video Tutorial: <u>https://euclid.roe.ac.uk/dmsf/files/12465/view</u>

ASTRONOMICO ASTRONOMICO OFISICA SO UNICO TRANSSO TRANS

IOT – IODA Instrument Operation Data Analysis

Giuseppe Riccio, Stefano Cavuoti & Massimo Brescia

5° Meeting Nazionale Collaborazione Euclid

IODA is a portable, multi-tasking and multi-user web application, specialized for tabular/image data analysis and monitoring, equipped with a local data repository and organized as a series of software modules specialized on several multi-process and multi-thread tasks

IODA IS THE OFFICIAL TOOL FOR IOT MONITORING & REPORTING OPERATIONS

• Instrument monitoring, report generation and delivery

periodic report generation on a user-defined parameters list and delivery to remote archive;
on demand customised report generation on a user selected parameter list, locally stored;

• Visualization/Exploration

 \circ series of plots on user selected parameters/data products and ranges

- dynamic histograms, scatter plots, trend plots
- observed images (static view, dynamic windowing, statistical characterization)

• Statistics

• base (default) estimators (automatically produced with the plots)

- \circ mean, median, RMS, σ , variance, min-max, MAD, NMAD, kurtosis, skewness, ...
- \circ special estimations (tables/images), expandable upon requests
 - \circ mode, percentiles, map counting, thresholding maps, biweight, σ -clipping, ...

Machine/Deep Learning

 \circ Regression/classification/clustering experiments on available data

Description & Docs : https://euclid.roe.ac.uk/projects/ioda-euclid-operations-data-analysis-software-system/wiki

Description

Status

IODA **Instrument Operations Data Analysis**

Euclid IOT On-Demand Report id: 12433

iot-report-12433-custom-20191128003000_20191128003300_NISP

*** Summary of analyzed parameters

Parameter

on-demand reports recap on a set of NISP parameters, defined in a JSON configuration file.

The same structure applies to periodic reports and to VIS & QLA

Report Periodicity	CUSTOM
Report generation time :	2020-12-09 16:41:57
Generated by :	GiuseppeRiccio
Configuration file :	test_oustom_nisp.json
Owner :	GiuseppeRiccio

*** Configuration

Date Start : Date Stop : Sampling : 2019-11-28 00:30:00 2019-11-28 00:33:00 fuil

N	ot	es		

NISP Status :

...

Parameter Subsystem			Description	Status	
	NISP SCIENCE				
	NIST0230	GWAFWA	GWA Motor phase B current	•	
	NIST0913	DPU-DCU	DPU1 DCU1 2.5D_PWR Current	•	
	NIS10357	GWAFWA	FVKA Motor phase A current	•	

GWA-FWA

GWA-FWA

Subsystem

NISP HKTM

Detected 8 error(s)

	_	
NISP	Error	List

Level	Origin	Description
•	HKTM	Impossible to retrieve data from local DB during analysis step. Analysis can not be performed
•	HKTM	No data available in local DB for parameter NIST0013 during acquisition #1
6	HKTM	Parameter : NISTE013. One or more additional parameters have no data available for Acquisition #1. Operation #1
•	SCIENCE	90 values out of range for parameter NIST0357 during acquisition #1
•	HKTM	90 values out of range for parameter NIST0357 during acquisition #1
0	HKTM	Parameter : NIST0357. One or more additional parameters have no data available for Acquisition #1, Operation #1
•	HKTM	Parameter : NISTE357. One or more additional parameters have no data available for Acquisition #1, Operation #2
0	HKTM	Parameter : NIST0357. One or more additional parameters have no data available for Acquisition #1, Operation #3

The JSON configuration file can be easily edited by using the IODA online editor or uploaded by user

GWA Motor phase B current

FWA Motor phase A current

NIST0230

NIST0357

- NEW Interface with EAS for Nominal VIS/NISP Operations and NISP IWS for Commissioning/Contingency
- **Currently working** on data from:
 - PGRADE LE1 SCIENCE TM NISP
 - RADE SOC HTKM for NISP and VIS
 - NEW LE2 specific DP for VIS
 - NEW QLA data provided by SOC
 - tables/images uploaded by users
 - **Flagging system** to highlight errors or issues in plots, reports & images
 - Easy customizable for other systems/instruments/DPs
 - Administration panel for easy configuration
 - Docker version for easy installation

NEW

NEW

- Backup system for data recovery
- Monitored data are **not permanently stored** on IODA machine (thus reducing redundancy and storage reqs)
- Authentication service to access with registration and password recovery forms
 - Image analysis and cut-out extraction
 - Extensive use of **parallel computing** for highest performances
- Machine Learning and advanced statistics tools

IODA has been SUCCESSFULLY tested during SOVT-1 campaign

IODA current installations:

- NISP01 machine interfacing with IWS repository
- NISP01 machine interfacing with EAS
- VIS machine interfacing with EAS