

Focus on OU-MER

Mario Nonino, Marco Castellano, Emiliano Merlin, Erik Romelli On behalf of the OU-MER team

5° Meeting Nazionale Collaborazione Euclid 23-25 February 2022

Euclid Organisation Unit which is in charge of the creation of the **official** source list:

from images to catalogue

How is this accomplished? Quick visual summary (more details next talks):

@ M. Castellano

Tiles are the basic blocks , both for Wide and Deep Surveys

* MER output (including tiled input images) is archived and delivered per tile.

* Downstream PF's (LE3, PHZ, SHE, SIR) get MER input per tile

Tile example

VIS (NIR) observations MER tile Core area

Tiling schema: M.Kummel

Ext tiled on the very same footprint

.. from tile to catalogue

Estimate the fluxes (magnitudes) of all the detected objects in all bands.

OU-MER team and close collaborators

Mario Nonino, Hervé Dole, Martin Kuemmel, Mohammad Akhlaghi, Hubert Bretonniere, Remi Cabanac, Fernando Caro, Javier Gracia Carpio, Marco Castellano, Marc Dexet, Paola Dimauro, Yuedong Fang, Samuele Galeotta, Marc Huertas-Company, Loic Maurin, Emiliano Merlin, Erik Romelli, Elie Soubrié, Andrea Tramacere, Thomas Vassallo, Igor Zinchenko

.. OU-MER in depth

- M. Castellano => Detection & Deblending
- *E. Merlin* => Photometry
- *E. Romelli* => Catalogue

Q&A at the end of the 3 talks!

- Further informations on the MER PF and documentation:
- https://euclid.roe.ac.uk/projects/mer_pf/wiki/Wiki
- https://wiki.cosmos.esa.int/euclid/index.php/EC_SGS_OU_MER
- https://euclid.roe.ac.uk/projects/mer_pf/issues

Detection Requirements

- Detection in VIS for shear measurement (SHE)
- SIR and PHZ need all objects -> need all N-IR objects
- Detection on one image (VIS + Y/J/H coadd or chi-square) excluded due to selection effects for weak lensing
- Solution:
 - \circ Independent detection on VIS;
 - Independent detection on NIR (Y+J+H)
 - \circ $\,$ Merging VIS and NIR sources into single list $\,$

M. Kuemmel

Combining VIS and NIR sources

NIR detection image with NIR objects.

VIS image with the VIS detected objects and the NIR-only objects

VIS NIR segm. 10" 10"). 00 (\cdot) Ċ OO0 Ô \odot \odot ٢ O_O Combined VIS segm. 10" 000 10" (\cdot) (\cdot) \bigcirc

VIS segmentation image with the projected NIR object positions and the identified NIR-only objects

Combined, final segmentation image with the combined objects

M. Kuemmel

Combining VIS and NIR sources

Flagging spurious detections with Al

- ★ Random Forest Classifier : training with 500k objects from 8 SC8 tiles
- ★ using the OU-MER photometric catalog, a **spurious probability** is assigned to each detected source
- \star 4% of detected sources are spurious (i.e., not real), of which up to 90% can be identified and removed
- Spurious sources are faint isolated objects or fake detection associated with diffraction spikes of bright stars

OU-MER – 5° Meeting Italiano Collaborazione Euclid

Detection and deblending

Deblending is the process of separating blended objects to recover the correct flux from each object

Deblending with ASTErIsM

ASTErIsM (Tramacere et al. 2016)

A. Tramacere, E.Romelli, V.Roscani, M. Castellano

Deblending efficiency on internal simulations

ASTErIsM vs SExtractor

A. Tramacere, et al. in prep.

A. Tramacere, E.Romelli, V.Roscani, M. Castellano

Deblending assessment tool

- ★ Comparison between the segmentation map produced by the MER pipeline and a ground-truth segmentation map generated from the TU catalogue
- ★ Identification of different cases (deblendings, over-deblendings and under-deblendings) to assess the performance of the deblending step in the MER pipeline
- ★ Computation of multiple diagnostics (% pix. covered, % pix. not-covered, % external pix, number of sources involved, etc) to provide a comprehensive characterization in every identified case

Deblending efficiency on official simulations

F. Caro, M. Castellano

Deblending efficiency with superimposed cluster

- ★ Superimposition of CLASH cluster images on Euclid tiles to analyze the deblending performance of the MER pipeline under more realistic and complex circumstances
- \star TU and CLASH catalogues are used to establish the ground-truth in this alternative testing case

F. Caro, M. Castellano

OU-MER Photometry

Emiliano Merlin - OAR

Photometric techniques

Forced photometry on positions of detected/deblended sources

Detection (VIS FWHM=0.16", mlim=24.6, a few NIR): total flux from "extended" Kron elliptical apertures (a-phot, Merlin+19)

All other bands (NIR: FWHM=0.55", mlim=23.0, **EXT:** FWHM>1", 23<mlim<24.5):

- Fixed circular apertures in 2FWHM PSF-matched (a-phot) [APER in catalog; total flux is DET Kron + color(band-DET)]
- Template fitting (*t-phot, Merlin+2015,2016*) [TOTAL in catalog]

Both a-phot and t-phot widely tested/used (CANDELS, ASTRODEEP, Frontier Fields...); "euclidized" by SDC-IT (Galeotta, Maino, Romelli)

Photometric techniques

Forced photometry on positions of detected/deblended sources

Detection (VIS FWHM=0.16", mim=24.6, a few NIR): total flux from "extended" Kron elliptical apertures (a-phot, Merlin+19)

All other bands (NIR: FWHM=0.55", mlim=23.0, EXT: FWHM>1", 23<mlim<24.5):

- Fixed circular apertures in 2FWHM PSF-matched (a-phot) [APER in catalog; total flux is DET Kron + color(band-DET)]
- Template fitting (*t-phot, Merlin+2015,2016*) [TOTAL in catalog]
- VIS PSF fitting (*t-phot* only meaningful for stars!)
- Soon to include model fitting: Euclid Morphology Challenge (EMC, see later slides)

Euclid preparation: The Euclid Morphology Challenge - I. Model-fitting photometry for billions of galaxies

Emiliano Merlin^{1*}, Marco Castellano¹, Marc Huertas-Company^{2, 3, 4, 5}, Hubert Bretonnière^{6, 7}, Diego Tuccillo³, Fernando Buitrago⁶, Ulrike Kuchner⁸, John Peterson⁹, Christopher Conselice¹⁰, Boris Häußler¹¹, code developers / participants, and friends

- ¹ INAF-Osservatorio Astronomico di Roma, Via Frascati 33, I-00078 Monteporzio Catone, Italy
- ² Universidad de la Laguna, E-38206, San Cristóbal de La Laguna, Tenerife, Spain
- ³ Instituto de Astrofísica de Canarias. Calle Vía Làctea s/n, 38204, San Cristóbal de la Laguna, Tenerife, Spain
- ⁴ University of Paris Denis Diderot, University of Paris Sorbonne Cité (PSC), 75205 Paris Cedex 13, France
- ⁵ Observatoire de Paris, PSL Research University 61, avenue de l'Observatoire, F-75014 Paris, France
- ⁶ Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências, Universidade de Lisboa, Tapada da Ajuda, PT-1349-018 Lisboa, Portugal
- ⁶ Université Paris-Saclay, CNRS, Institut d'astrophysique spatiale, 91405, Orsay, France
- ⁷ Université de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France
- 8 University of Manchester, Manchester, United Kingdom
- ⁹ Purdue University, West Lafayette, IN, USA
- ¹⁰ European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile

Check measured fluxes/magnitudes against "True Universe" values from OU-SIM simulations in Scientific Challenges (Flagship Nbody DM simulation)

... But: long history of major issues and errors in simulations, which caused delays and difficulties in assessing the accuracy of the OU-MER pipeline

(OU-MER required dedicated "featureless" simulations since... forever, but we never got them)

 \rightarrow Created and used internal simulations and tests (that were used for the EMC and for validation with OU-PHZ)

I am running checks now to see how we can improve the simulations (by increasing the size of the stamps). In addition to the photometry biases (flux loss outs simulations runtime at a reasonnable level. This activity will require some days of work before I can come back to you with a proposition and some more time if

Anyway, the bottom line is that the problem you identified is real and comes from the simulations and we are working on it.

Thank you for your very helpful feedback.

Emiliano Merlin - OU-MER Photometry

		ſ	
7		an	-
-	-	00	Ωŝ

EXT Photometry provided to PHZ are shallower than expected

10-Sigma Depth

LSST: Tile 73748 / DECAM: Tile

Added by Fi	orian Dubath 4 months ago. Updated 13 days ago.		
Status:	New	Start date:	2021-10-11
Priority:	Normal	Due date:	
Assignee:	Aku Venhola	% Done:	0%
Category:	-	Estimated time:	
Target version:	-		
Buddy:			

Description

Checking the data received during SC8 we observe that most of the ext data are shallower than the requirement (see attached plots). The quality of the input has an impact on PHZ-PF performance.

Files

27

SN_Mag_MER_TOTAL_T81893.pdf (2.16 MB) 4

Hi, I did some analysis on this and the problem seems to be in the sky values that I filled into the survey file. I got the background levels, exposure times and zeropoints from the CFTS team and used those to generate the survey files. The background values that I got were in ADUs/exposure and so were the ZPs as well. I scaled the ZPs with exposure time, in order to get them into the right units for OU-SIM. However, I did not scale the background values with the exposure time, so when they were transformed from ADUs to magnitudes using the per second ZPs, the background values get way too bright.

More precisely, this introduces a -2.5log10(exp_time) error to the background brightness. With typical CFIS r-band exposure time of 80s this corresponds to 4.7 mag. If the background noise follows approximately a Poisson distribution, this mistake scales the background RMS to 10 times larger than in the real data. So, when the noise scales down to 10% from the current one, it should increase the 10 sigma object depth by 2.5 mag, and thus makes the data to fulfill the quality requirements. Sorry about this mistake!

Cycle 12 simulations (Feb. 20, 2022) NIR and VIS mosaic (same region):

(Could have been like this some years ago...)

Each band is also checked in details - some examples:

Official Euclid consortium initiative

EM, M. Castellano, M. Huertas-Company (MWG, IAC/UniParis) + H. Bretonniere, D. Tuccillo, U. Kuchner, C. Conselice, F. Buitrago

- EGG (Schreiber+2017) + GalSim (Rowe+2015) + many Python scripts
- RedBook + J.C.Cuillandre estimated depths, MDB PSFs
- 5x 0.5 sq.deg. FoVs simulated in VIS, and in NIR + EXT (LSST) for one case (rebinned)
- 1.2 million galaxies, 350k with SNR>5 in VIS
- 3 realizations: double Sersic, single Sersic, "realistic" (ML)
- Produced and distributed images, RMS maps, list of input positions, PSF models
- 8 code developers invited, 5 accepted: *DeepLeGATo, Galapagos-2, Morfometryka, ProFit, SourceXtractor++*
- Required to provide photometry and morphology estimates for 5sigma sources
- Started in 2020, finishing now...

Currently finalizing drafts of two papers (Merlin+2022, MER Pre-Launch Key Paper, about photometry; Bretonniere+2022, GAEV Pre-Launch Key Paper, about morphology)

Also, checked OU-MER photometry on EMC images

Also, checked OU-MER photometry on EMC images: very similar to SC8!

Also, checked OU-MER photometry on EMC images: very similar to SC8! GALAXIES APHOT

EMC OU-PHZ check

G. Desprez (OU-PHZ) used photometry on EMC images to test photo-z accuracy

(PhD Thesis)

n=41674

 $\sigma = 0.057$ η=7.0%

5

Photometric redshift

З

2

True redshift

EMC OU-PHZ check

MER Photometry from does not *significantly* impact the performance of PHZ estimates w.r.t. "noisy" True Universe

0.9 0.8 F015 — ти 0.6 --- OPTnoise1 --- OPTnoise2 ····· REFnoise noscatter REFnoise_0.1scatter 0.5 TOTAL TPHOT APER 2FWHM_matched2u TOTAL_nirKron_visKron_extTPHOT Euclid requirement 0.4 0 2 3 Photometric redshift

1.0

OU-MER photometry: conclusions

- Long history of problems in OU-SIM simulations caused delays in quality checks. Often had to use home-made simulations
- Now, acceptable-to-good results; still finding some issues; working on them (new methods, checks on PSFs, OU-SIM ad hoc simulations with objects replicated on a regular grid of positions to factorize contamination out)
- Also checking nominal error budget consistency (F. Caro)
- Euclid Morphology Challenge: 5 model-fitting codes compared on simulations, 2 key-project papers being finalized, also used to check MER photometry, results similar to SC8
- Checks with OU-PHZ on EMC data (results similar to SC8): current photometry issues do not significantly impact the quality of photo-z

OU-MER Catalog and output description

Erik Romelli On behalf of the OU-MER team

5° Meeting Nazionale Collaborazione Euclid

OU-MER Deliverable

DpdMerBksMosaic

Background-subtracted mosaic

DpdMerDetectionMosaic

Mosaic used to perform the object detection, it could be a combination of the VIS and NIR background subtracted mosaics.

DpdMerSegmentationMap

Map showing the connected pixels of the objects detected on the corresponding detection mosaic

DpdMerFinalCatalog

Final merged catalog with photometric and morphological information

https://euclid.roe.ac.uk/projects/mer_pf/wiki/DataModel

MER mosaics and segmap

Outer Tile -> Mosaic

MER mosaics and segmap

Outer Tile -> Mosaic Inner Tile -> Segmentation Map -> Catalogued sources

> No overlap = No duplicates

MER segmentation map

OBJECT_ID	FLUX_VIS_PSF
RIGHT_ASCENSION	FLUXERR_VIS_PSF
DECLINATION	FLUX_SEGMENTATION
SEGMENTATION_MAP_ID	FLUXERR_SEGMENTATION
VIS_DET	FLUX_DETECTION_TOTAL
	FLUXERR_DETECTION_TOTAL
FLUX_[band]_APER	FLAG_[band]
FLUXERR_[band]_APER	FLAG_NIR_STACK
FLUX_NIR_STACK_APER	
FLUXERR_NIR_STACK_APER	AVG_TRANS_WAVE_[band]
FLUX_[band]_TOTAL	
FLUXERR_[band]_TOTAL	

DEBLENDED_FLAG
PARENT_ID
BLENDED_PROB
SHE_FLAG
VARIABLE_FLAG
BINARY_FLAG
POINT_LIKE_FLAG
POINT_LIKE_PROB
EXTENDED_FLAG
EXTENDED_PROB

SPURIOUS_FLAG SPURIOUS_PROB MAG_STARGAL_SEP DET_QUALITY_FLAG MU_MAX MUMAX_MINUS_MAG

SEGMENTATION_AREA
A_IMAGE
POSITION_ANGLE
ELLIPTICITY
CONCENTRATION
ASYMMETRY
SMOOTHNESS
GINI
MOMENT_20

A_IMAGE_ERR POSITION_ANGLE_ERR ELLIPTICITY_ERR CONCENTRATION_ERR ASYMMETRY_ERR SMOOTHNESS_ERR GINI_ERR MOMENT_20_ERR GAL_EBV_ERR

-	
RIGHT_ASCENSION	F
DECLINATION	F
SEGMENTATION_MAP_ID	F
VIS_DET	F
	, F
FLUX_[band]_APER	F
FLUXERR_[band]_APER	F
FLUX_NIR_STACK_APER	

FLUXERR_NIR_STACK_APER

FLUXERR_[band]_TOTAL

FLUX_[band]_TOTAL

OBJECT ID

FLUX_VIS_PSF FLUXERR_VIS_PSF FLUX_SEGMENTATION FLUXERR_SEGMENTATION FLUX_DETECTION_TOTAL FLAG_[band] FLAG_NIR_STACK AVG_TRANS_WAVE_[band]

DEBLENDED_FLAG PARENT_ID BLENDED_PROB SHE_FLAG VARIABLE_FLAG BINARY_FLAG POINT_LIKE_FLAG POINT_LIKE_PROB EXTENDED_FLAG SPURIOUS_FLAG SPURIOUS_PROB MAG_STARGAL_SEP DET_QUALITY_FLAG MU_MAX MUMAX_MINUS_MAG SEGMENTATION_AREA A_IMAGE POSITION_ANGLE ELLIPTICITY CONCENTRATION ASYMMETRY SMOOTHNESS GINI MOMENT 20 A_IMAGE_ERR POSITION_ANGLE_ERR ELLIPTICITY_ERR CONCENTRATION_ERR ASYMMETRY_ERR SMOOTHNESS_ERR GINI_ERR MOMENT_20_ERR GAL_EBV GAL_EBV_ERR

OBJECT_ID	FLUX_VIS_PSF	DEBLENDED_FLAG	SPURIOUS_FLAG	SEGMENTATION_AREA	A_IMAGE_ERR
RIGHT_ASCENSION	FLUXERR_VIS_PSF	PARENT_ID	SPURIOUS_PROB	A_IMAGE	POSITION_ANGLE_ERR
DECLINATION	FLUX_SEGMENTATION	BLENDED_PROB	MAG_STARGAL_SEP	POSITION_ANGLE	ELLIPTICITY_ERR
SEGMENTATION_MAP_ID	FLUXERR_SEGMENTATION	SHE_FLAG	DET_QUALITY_FLAG	ELLIPTICITY	CONCENTRATION_ERR
VIS_DET	FLUX_DETECTION_TOTAL	VARIABLE_FLAG	MU_MAX	CONCENTRATION	ASYMMETRY_ERR
	FLUXERR_DETECTION_TOTAL	BINARY_FLAG	MUMAX_MINUS_MAG	ASYMMETRY	SMOOTHNESS_ERR
FLUX_[band]_APER	FLAG_[band]	POINT_LIKE_FLAG		SMOOTHNESS	GINI_ERR
FLUXERR_[band]_APER	FLAG_NIR_STACK	POINT_LIKE_PROB		GINI	MOMENT_20_ERR
FLUX_NIR_STACK_APER		EXTENDED_FLAG		MOMENT_20	
FLUXERR_NIR_STACK_APER	AVG_TRANS_WAVE_[band]	EXTENDED_PROB			GAL_EBV
FLUX_[band]_TOTAL					GAL_EBV_ERR
FLUXERR_[band]_TOTAL					

Available bands								
VIS	Н	DECam g	OmegaCAM g	Rubin/LSST g	MegaCam u	JPCam g	Pan-STARRS i	HSC z
	J	DECam i	OmegaCAM i	Rubin/LSST i	MegaCam r		Pan-STARRS z	
	Y	DECam r	OmegaCAM r	Rubin/LSST r				
		DECam z	OmegaCAM u	Rubin/LSST u				
				Rubin/LSST z				

OBJECT_ID	FLUX_VIS_PSF
RIGHT_ASCENSION	FLUXERR_VIS_PS
DECLINATION	FLUX_SEGMENTA
SEGMENTATION_MAP_ID	FLUXERR_SEGME
VIS_DET	FLUX_DETECTION
	FLUXERR_DETECT
FLUX_[band]_APER	FLAG_[band]
FLUXERR_[band]_APER	FLAG_NIR_STACK
FLUX_NIR_STACK_APER	
FLUXERR_NIR_STACK_APER	AVG_TRANS_WAV
FLUX_[band]_TOTAL	

FLUXERR_[band]_TOTAL

	DEBLENDED_FLAG
PSF	PARENT_ID
TATION	BLENDED_PROB
MENTATION	SHE_FLAG
DN_TOTAL	VARIABLE_FLAG
CTION_TOTAL	BINARY_FLAG
	POINT_LIKE_FLAG
СК	POINT_LIKE_PROB
	EXTENDED_FLAG
AVE_[band]	EXTENDED_PROB

SPURIOUS_FLAG
SPURIOUS_PROB
MAG_STARGAL_SEP
DET_QUALITY_FLAG
MU_MAX
MUMAX_MINUS_MAG

SEGMENTATION_AREA	A
A_IMAGE	Р
POSITION_ANGLE	E
ELLIPTICITY	C
CONCENTRATION	A
ASYMMETRY	S
SMOOTHNESS	G
GINI	Ν
MOMENT_20	
	G

A_IMAGE_ERR POSITION_ANGLE_ERR ELLIPTICITY_ERR CONCENTRATION_ERR ASYMMETRY_ERR SMOOTHNESS_ERR GINI_ERR MOMENT_20_ERR GAL_EBV GAL_EBV_ERR

	Available bands									
VIS	Н	DECam g	OmegaCAM g	Rubin/LSST g	MegaCam u	JPCam g	Pan-STARRS i	HSC z		
	J	DECam i	OmegaCAM i	Rubin/LSST i	MegaCam r		Pan-STARRS z			
	Y	DECam r	OmegaCAM r	Rubin/LSST r						
		DECam z	OmegaCAM u	Rubin/LSST u						
				Rubin/LSST z						

OBJECT_ID	FLUX_VIS_PSF	DEBLENDED_FLAG	SPURIOUS_FLAG	SEGMENTATION_AREA	A_IMAGE_ERR
RIGHT_ASCENSION	FLUXERR_VIS_PSF	PARENT_ID	SPURIOUS_PROB	A_IMAGE	POSITION_ANGLE_ERR
DECLINATION	FLUX_SEGMENTATION	BLENDED_PROB	MAG_STARGAL_SEP	POSITION_ANGLE	ELLIPTICITY_ERR
SEGMENTATION_MAP_ID	FLUXERR_SEGMENTATION	SHE_FLAG	DET_QUALITY_FLAG	ELLIPTICITY	CONCENTRATION_ERR
VIS_DET	FLUX_DETECTION_TOTAL	VARIABLE_FLAG	MU_MAX	CONCENTRATION	ASYMMETRY_ERR
	FLUXERR_DETECTION_TOTAL	BINARY_FLAG	MUMAX_MINUS_MAG	ASYMMETRY	SMOOTHNESS_ERR
FLUX_[band]_APER	FLAG_[band]	POINT_LIKE_FLAG		SMOOTHNESS	GINI_ERR
FLUXERR_[band]_APER	FLAG_NIR_STACK	POINT_LIKE_PROB		GINI	MOMENT_20_ERR
FLUX_NIR_STACK_APER		EXTENDED_FLAG		MOMENT_20	
FLUXERR_NIR_STACK_APER	AVG_TRANS_WAVE_[band]	EXTENDED_PROB	L		GAL_EBV
FLUX_[band]_TOTAL					GAL_EBV_ERR
FLUXERR_[band]_TOTAL					

	Available bands									
VIS	Н	DECam g	OmegaCAM g	Rubin/LSST g	MegaCam u	JPCam g	Pan-STARRS i	HSC z		
	J	DECam i	OmegaCAM i	Rubin/LSST i	MegaCam r		Pan-STARRS z			
	Y	DECam r	OmegaCAM r	Rubin/LSST r						
		DECam z	OmegaCAM u	Rubin/LSST u						
				Rubin/LSST z						

OBJECT_ID	FLUX_VIS_PSF	DEBLENDED_FLAG	SPURIOUS_FLAG	SEGMENTATION_AREA
RIGHT_ASCENSION	FLUXERR_VIS_PSF	PARENT_ID	SPURIOUS_PROB	A_IMAGE
DECLINATION	FLUX_SEGMENTATION	BLENDED_PROB	MAG_STARGAL_SEP	POSITION_ANGLE
SEGMENTATION_MAP_ID	FLUXERR_SEGMENTATION	SHE_FLAG	DET_QUALITY_FLAG	ELLIPTICITY
VIS_DET	FLUX_DETECTION_TOTAL	VARIABLE_FLAG	MU_MAX	CONCENTRATION
	FLUXERR_DETECTION_TOTAL	BINARY_FLAG	MUMAX_MINUS_MAG	ASYMMETRY
FLUX_[band]_APER	FLAG_[band]	POINT_LIKE_FLAG		SMOOTHNESS
FLUXERR_[band]_APER	FLAG_NIR_STACK	POINT_LIKE_PROB		GINI
FLUX_NIR_STACK_APER		EXTENDED_FLAG		MOMENT_20
FLUXERR_NIR_STACK_APER	AVG_TRANS_WAVE_[band]	EXTENDED_PROB		
FLUX_[band]_TOTAL				
FLUXERR_[band]_TOTAL				

A_IMAGE_ERR POSITION_ANGLE_ERR ELLIPTICITY_ERR CONCENTRATION_ERR ASYMMETRY_ERR SMOOTHNESS_ERR GINI_ERR MOMENT_20_ERR GAL_EBV

GAL_EBV_ERR

	Available bands									
VIS	Н	DECam g	OmegaCAM g	Rubin/LSST g	MegaCam u	JPCam g	Pan-STARRS i	HSC z		
	J	DECam i	OmegaCAM i	Rubin/LSST i	MegaCam r		Pan-STARRS z			
	Y	DECam r	OmegaCAM r	Rubin/LSST r						
		DECam z	OmegaCAM u	Rubin/LSST u						
				Rubin/LSST z						

VIS_DET

No VIS-only detection

1: detected by VIS 0: NIR-only detection

VIS_DET

No VIS-only detection

1: detected by VIS 0: NIR-only detection

DET_QUALITY_FLAG

0: regular 1: contaminated 2: originally blended 4: saturated pixels 8: edge of the field

VIS_DET

No VIS-only detection

1: detected by VIS 0: NIR-only detection

DET_QUALITY_FLAG

O: regular 1: contaminated 2: originally blended 4: saturated pixels 8: edge of the field

POINT_LIKE_FLAG

0: extended source 1: point-like source VIS_DET = 1 DET_QUALITY_FLAG = 0 POINT_LIKE_PROBA > threshold (MDB)

SPURIOUS_FLAG: work in progress...

VIS_DET

No VIS-only detection

1: detected by VIS O: NIR-only detection

DET_QUALITY_FLAG

0: regular 1: contaminated 2: originally blended 4: saturated pixels 8: edge of the field

POINT_LIKE_FLAG

0: extended source 1: point-like source VIS_DET = 1 DET_QUALITY_FLAG = 0 POINT_LIKE_PROBA > threshold (MDB)

SPURIOUS_PROBA

VIS_DET

No VIS-only detection

1: detected by VIS O: NIR-only detection

DET_QUALITY_FLAG

O: regular 1: contaminated 2: originally blended 4: saturated pixels 8: edge of the field SPURIOUS_PROBA

SPURIOUS_FLAG: work in progress...

DEBLENDED_FLAG

0: not originally blended 1: originally blended

POINT_LIKE_FLAG

0: extended source 1: point-like source VIS_DET = 1 DET_QUALITY_FLAG = 0 POINT_LIKE_PROBA > threshold (MDB)

VIS_DET

No VIS-only detection

1: detected by VIS O: NIR-only detection

DET_QUALITY_FLAG

O: regular 1: contaminated 2: originally blended 4: saturated pixels 8: edge of the field

SPURIOUS_PROBA

SPURIOUS_FLAG: work in progress...

DEBLENDED_FLAG

O: not originally blended 1: originally blended

PARENT_ID*

-1: not originally blended # : parent source ID Same PARENT_ID -> deblended from same parent

POINT_LIKE_FLAG

0: extended source 1: point-like source VIS_DET = 1 DET_QUALITY_FLAG = 0 POINT_LIKE_PROBA > threshold (MDB)

* New in DM 9

Something more about MER catalogs

The OU-MER catalog uses the common definitions for NULL values

(EL NullValue · develop · EuclidLibs / EL Utils · GitLab (euclid-sgs.uk)

```
class NullValueDefinition(object):
SHORT = 32767
   UNSIGNED SHORT = 65535
► INT = 2147483647
   UNSIGNED INT = 4294967295
   LONG = 0 + INT
   UNSIGNED LONG = 0 + UNSIGNED INT
LONG LONG = 9223372036854775807
   UNSIGNED LONG LONG = 18446744073709551615
FLOAT = (
       -9.1191198405961529780329707018610306211666548598348835886874346433328408778606899431906640529632568359375e-36
   DOUBLE = (
        -9,1191291391491003702887445737228465586062979895028453796745525427859787211555512517184115986283721166927307422156445682048797607421875e-36
   BOOL = 0
   STRING = ""
   COMPLEX FLOAT = complex(FLOAT, 0)
   COMPLEX DOUBLE = complex(DOUBLE, 0)
```


Something more about MER catalogs

Delivered within DpdMerFinalCatalog:

MER CUTOUT CATALOG								
OBJECT_ID	CORNER_0_RA	CORNER_1_RA	CORNER_2_RA	CORNER_3_RA	SEMIMAJOR_AXIS			
RIGHT_ASCENSION	CORNER_0_DEC	CORNER_1_DEC	CORNER_2_DEC	CORNER_3_DEC	SEMIMINOR-AXIS			
DECLINATION					POSITION_ANGLE			
					PARENT_ID			
					FLUX_DETECTION_TOAL			
		CORNER_3	COF	RNER_2				

