











Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas





# **CUBES**

# Cassegrain U-Band Efficient Spectrograph

Science

#### Chris Evans & Cyrielle Opitom

CUBES Phase B Consortium kick-off meeting

24/01/2022

## The ultimate UV instrument for Paranal



- Broad science case
- Unique discovery space (incl. cf. ELT!)
- > 300-405 nm at R ≥ 22,000 & R ~7,000
- Fibre-feed to UVES



# The ultimate UV instrument for Paranal

Experimental



# Science with UV-efficient ground-based spectrographs

3-5 February 2021

Online worksh

Incl. more technical papers on:

- System overview (Zanutta et al.)
- Simulation tools (Genoni et al.)
- Slicer design (Calcines et al.)
  - Grating prototype (Zeitner et al.)

CUBES Phase B Consortium kick-off meeting

Experimental Astronomy

Astrophysical Instrumentation and Methods

20+ papers subm./accepted for Special Issue

# The ultimate UV instrument for Paranal



#### The CUBES Science Case



**Abstract** We introduce the scientific motivations for the development of the Cassegrain U-Band Efficient Spectrograph (CUBES) that is now in construc-

Experimental Astronomy Astrophysical Instrumentation and Methods

- > Science overview paper in prep.
- Summaries of other ExA articles
- Incl. other cases from SC doc
- First draft by end of Jan
- 'Opt-on' by Fri 18<sup>th</sup> Feb.
- Submission at end of Feb.

tion for the Very Large Telescope... CUBES Phase B Consortium kick-off meeting

24/01/2022

4

## The Origin of the Solar System Elements

| 1<br>H   |          | big                   | bang     | fusion   |          |                           | cosi     | mic ray  | y fissio | n ,      | ×.       |          |          |          |          |          | 2<br>He  |
|----------|----------|-----------------------|----------|----------|----------|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 3<br>Li  | 4<br>Be  | merging neutron stars |          |          |          | exploding massive stars 💆 |          |          |          | 5<br>B   | 6 C      | 7<br>N   | 8<br>O   | 9<br>F   | 10<br>Ne |          |          |
| 11<br>Na | 12<br>Mg | dying low mass stars  |          |          |          | exploding white dwarfs 🧖  |          |          |          | 13<br>Al | 14<br>Si | 15<br>P  | 16<br>S  | 17<br>CI | 18<br>Ar |          |          |
| 19<br>K  | 20<br>Ca | 21<br>Sc              | 22<br>Ti | 23<br>V  | 24<br>Cr | 25<br>Mn                  | 26<br>Fe | 27<br>Co | 28<br>Ni | 29<br>Cu | 30<br>Zn | 31<br>Ga | 32<br>Ge | 33<br>As | 34<br>Se | 35<br>Br | 36<br>Kr |
| 37<br>Rb | 38<br>Sr | 39<br>Y               | 40<br>Zr | 41<br>Nb | 42<br>Mo | 43<br>Tc                  | 44<br>Ru | 45<br>Rh | 46<br>Pd | 47<br>Ag | 48<br>Cd | 49<br>In | 50<br>Sn | 51<br>Sb | 52<br>Te | 53<br>   | 54<br>Xe |
| 55<br>Cs | 56<br>Ba |                       | 72<br>Hf | 73<br>Ta | 74<br>W  | 75<br>Re                  | 76<br>Os | 77<br>Ir | 78<br>Pt | 79<br>Au | 80<br>Hg | 81<br>TI | 82<br>Pb | 83<br>Bi | 84<br>Po | 85<br>At | 86<br>Rn |
| 87<br>Fr | 88<br>Ra |                       |          |          |          |                           |          |          |          |          |          |          |          |          |          |          |          |
|          |          |                       | 57       | 58       | 59       | 60                        | 61       | 62       | 63       | 64       | 65       | 66       | 67       | 68       | 69       | 70       | 71       |
|          |          |                       | La<br>89 | Ce       | Pr<br>91 | Nd<br>92                  | Pm       | Sm       | Eu       | Gd       | Tb       | Dy       | Но       | Er       | Tm       | УЬ       | Lu       |
|          |          |                       | Ac       | Th       | Pa       | U                         |          |          |          |          |          |          |          |          |          |          |          |

Astronomical Image Credits: ESA/NASA/AASNova

Graphic created by Jennifer Johnson

#### Qs at VLT2030 mtg re: resolution

Addressed prior to Phase A

#### Written-up as SPIE paper in December

#### Stellar astrophysics in the near UV with VLT-CUBES

H. Ernandes<sup>1,2,3</sup>, C. J. Evans<sup>2</sup>, B. Barbuy<sup>1</sup>, B. Castilho<sup>4</sup>, G. Cescutti<sup>5</sup>, N. Christlieb<sup>6</sup>, S. Cristiani<sup>5</sup>, G. Cupani<sup>5</sup>, P. Di Marcantonio<sup>5</sup>, M. Franchini<sup>5</sup>, C. Hansen<sup>7</sup>, A. Quirrenbach<sup>6</sup>, R. Smiljanic<sup>8</sup>

<sup>1</sup>Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, São Paulo, 05508-900, Brazil
 <sup>2</sup>UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
 <sup>3</sup>IfA, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
 <sup>4</sup>Laboratório Nacional de Astrofísica/MCTIC, Rua Estados Unidos, 154 - 37504-364, Itajubá, MG, Brazil
 <sup>5</sup>INAF - Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 34131 Trieste, Italy
 <sup>6</sup>Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königgstuhl 12, 69117, Heidelberg, Germany
 <sup>7</sup>Max Planck Institute for Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716, Warsaw, Poland



Qs at VLT2030 mtg re: resolution

Addressed prior to Phase A

Written-up as SPIE paper in December

#### Stellar astrophysics in the near UV with VLT-CUBES

H. Ernandes<sup>1,2,3</sup>, C. J. Evans<sup>2</sup>, B. Barbuy<sup>1</sup>, B. Castilho<sup>4</sup>, G. Cescutti<sup>5</sup>, N. Christlieb<sup>6</sup>, S. Cristiani<sup>5</sup>, G. Cupani<sup>5</sup>, P. Di Marcantonio<sup>5</sup>, M. Franchini<sup>5</sup>, C. Hansen<sup>7</sup>, A. Quirrenbach<sup>6</sup>, R. Smiljanic<sup>8</sup>

<sup>1</sup>Universidade de São Paulo, IAG, Rua do Matão 1226, Cidade Universitária, São Paulo, 05508-900, Brazil
 <sup>2</sup>UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
 <sup>3</sup>IfA, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
 <sup>4</sup>Laboratório Nacional de Astrofísica/MCTIC, Rua Estados Unidos, 154 - 37504-364, Itajubá, MG, Brazil
 <sup>5</sup>INAF - Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, 34131 Trieste, Italy
 <sup>6</sup>Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königgstuhl 12, 69117, Heidelberg, Germany
 <sup>7</sup>Max Planck Institute for Astronomica Center, Polish Academy of Sciences, Bartycka 18, 00-716, Warsaw, Poland



-0.3

250

#### Performance of CUBES Phase A design?



#### From Ernandes et al. (ExA Special Issue)

| $t_{ m exp}$ | $\rm S/N_{\lambda 3050}$   | $\rm S/N_{\lambda 3730}$ | $\rm S/N_{\lambda 3050}$  | ${ m S/N}_{\lambda3730}$ |
|--------------|----------------------------|--------------------------|---------------------------|--------------------------|
| $(\min)$     | $(U_{\rm eff} \sim 14.25)$ | $(U_{\rm E2E} = 16)$     | $(U_{ m eff} \sim 16.25)$ | $(U_{\rm E2E}{=}18)$     |
| 5            | 7                          | 24                       | 1                         | 7                        |
| 10           | 12                         | 34                       | 3                         | 11                       |
| 30           | 25                         | 65                       | 6                         | 23                       |
| 60           | 36                         | 92                       | 10                        | 37                       |
| 120          | 53                         | 148                      | 15                        | 47                       |
| 240          | 89                         | 190                      | 20                        | 70                       |

2.5-3 mags deeper than UVES for metal-poor stars Takes us from handful of objects to 100s, to constrain nucleosynthesis models



NGC 6752





## **Cometary Science**



-20000

308.00

308.75 309.00 309.25 309.50 309.75 310.00 308.00 308 Wavelength (nm)

## Accretion/outflows in young stars

Near-UV is powerful for studies of YSOs (accretion, jets, winds etc)





Now kpc distances rather than just nearby star-forming regions

Low-res mode: sensitivity for faintest sources, so larger distances/extinction

Longer wavelength observations needed but objects also highly variable UVES fibrelink

Sufficient S/N with UVES within CUBES  $t_{exp}$ 

## Chasing baryons at cosmic noon

CUBES will enable the study and characterization of baryons in the inter-CGM at z~1.5-3.0 with different tracers (mainly HI and OVI).



QSO at z=2.5 observed for 2x600s

## Escape fraction from high-z galaxies

To quantify f<sub>esc</sub> from galaxies (cf. QSOs) in context of cosmic UV background

LR-mode ensure we are background limited for faint high-z sources



#### Transients

Transients (incl. kilonovae) a key motivation for fibre-link to UVES

Potentially excellent synergies with e.g. VRO/LSST



Absorption components in ISM to z=0.94 GRB (D'Elia et al. 2010)

Simultaneous CUBES+UVES observations critical for, e.g.:

- How GRB environment is influenced by the explosion
- Key diagnostic: FeII at  $\lambda_{rest}$  240 nm, so redshift range currently limited
- Helps separate interstellar features

Any new compelling case that needs to be added to the science case?

- Track the compliance of instrument expected performance for a selected subset of science cases
  - 5-6 key cases (presented earlier) with strong requirements
  - Ensure that essential requirements are met in case of trade-off or design changes
  - Any other critical case that needs to be tracked?

#### Science workshop:

Discuss GTO, sketch out strategy, identify broad themes, and tools needed

- Ideally in person
- When? June/early July?
- Where? Suggestions are open

Finalize Operation and Calibration Plan

Impact of  $O_3$  absorption on observations:

- Significant extinction at 300 nm
- Impact of seasonal variations? What data are available for Paranal?
- Can it be corrected using regular observations of flux standards?

Finalize Operation and Calibration Plan

- A&G filters: single free/u-band filter or filter wheel with LSST filters? Consequences in terms of operation and calibration (flatfield)?
- Others (2x2 binning for LR)

Produce a draft structure of the commissioning plan

# Is there anything else needed from the science team?











Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas







Science & Technology Facilities Council UK Astronomy Technology Centre

CUBES Phase B Consortium kick-off meeting