

The TeV-detected radio galaxy 3C 264: a science case in the perspective of CTA

Giulia Migliori (IRA)

B.Boccardi (MPIFR), P.Grandi (OAS), E.Torresi (OAS), F.Mertens (Kapteyn), V.Karamanavis, A.Angioni, C.Vignali (DIFA)

Boccardi et al., A&A 2019:arXiv:1905.06634

3C 264

- FRI/LERG radio galaxy (D_L=94 Mpc) in Abell 1367 cluster;
- Head-tail kpc structure with extended radio, optical, X-ray jet (Lara+'97, Perlman+'10, Meyer+'15);
- Gamma-ray detected by Fermi (Γ=1.94±0.10, F_{1-100GeV}=(2.85 ± 0.40) × 10⁻¹⁰ phot s⁻¹ cm⁻²);
- VHE candidate (Angioni+'17)=> MAGIC proposal (PI:Angioni)

3C 264: VHE

VERITAS detection in 2018 (Archer+'18):

- Monthly variable VHE flux rather than strong flare;
- Fermi-LAT: hints of enhanced MeV-GeV emission

Low amplitude *γ*-ray variability

3C 264 jet: X-rays

Year-to-month scale monitoring:

- Non-thermal core emission (Γ_{X-rays}=1.8-2.5, L_{2-10keV}=(8-30)×10⁴¹ erg s⁻¹);
- Long term variability: ×3 flux increase from 2000 to 2018 + harder when brighter trend?
- Short term variability (<3days): high(er) state immediately after the VHE detection.

G.Migliori

3C 264 jet: inner structure

MOJAVE VLBA 15 GHz (Sept 2016 - Oct 2018)

OAS VHE meeting 8-9 June 2022

3C 264 jet: kinematics

- Apparent bulk flow speed increases up to 11c:
 - constraints on the jet viewing angle ($\theta_{max} \leq 10^{\circ}$) and bulk motions ($\Gamma_{bulk} \sim 5-15$)
- Acceleration zone extends to 11 pc (~5×10⁴ R_s).

3C 264 jet: collimation

- The jet has a nearly parabolic shape on pc-scales;
- The recollimation starts at ~11pc distance;

collimation & acceleration take place over the same scales

3C 264 jet: SED

- Radio jet parameters between BL Lacs and FR I radio galaxies & double hump SED;
- No evidences of accretion features in the optical/UV band;
- Low amplitude gamma-ray & X-ray flux (and spectral?) variability.

3C 264 jet: SED

3C 264 switches between a low/soft state (LSS) vs high/hard state (HHS)

+

LSS is the "average" emission produced in a mildly relativistic region at the base of the acceleration zone (radio core)

3C 264 jet: SED

Multi-zone model:

- SLS in a Poynting flux dominated region of the core and HHS produced at the end of the acceleration region (particle dominated) by a blob with Γ_{bulk}~5-15;
- The observed variability due to changes of the Doppler factor/viewing angle (as proposed for CTA 102, Raiteri+'17)

Conclusions & future

 VLBI observations probe the acceleration and collimation zones of the jets and provide key constraints to the particle acceleration & radiative models for the HE/VHE emission;

- CTA will improve the characterisation of the VHE emission (spectrum & variability) in radio galaxies;
- Need for coordinate mw-campaigns (radio, optical & X-rays).

	SLS		HHS		
Model Parameters	Core Model 1	Core Model 2&3	Core Model 1	Layer Model 2	Spine Model 3
Γ_{bulk}	2.0	2.0	2.0	5.0	8.0
heta	10.0	10.0	10.0	10.0	5.0
<i>B</i> (G)	0.055	0.12	0.062	0.0075	0.0035
$B_{\rm eq}$ (G)	0.09	0.04	0.15	0.03	0.023
R(cm)	6.5×10^{16}	3×10^{17}	2.3×10^{16}	1.15×10^{17}	7×10^{16}
γ_{\min}	2×10^{3}	2×10^{2}	2×10^{3}	3×10^{3}	3×10^{3}
γ_{\max}	1×10^{6}	4×10^{5}	3×10^{6}	2×10^{6}	2×10^{6}
γ_{break}	2×10^{4}	4×10^{3}	8.5×10^{4}	3.5×10^{3}	5×10^{3}
p_1	2.2	2.2	2.1	2.2	2.1
p_2	3.1	3.1	3.0	2.7	2.66
$U_{\rm B}/U_{\rm e}$	0.13	37.0	0.021	0.002	0.0003
Powers					
$L_{\rm rad} ({\rm erg s^{-1}})$	2.4×10^{41}	3.1×10^{41}	5.1×10^{41}	6.0×10^{41}	1.3×10^{41}
$L_{\rm B}~({\rm erg~s^{-1}})$	1.7×10^{41}	1.7×10^{43}	2.6×10^{40}	6.8×10^{40}	1.4×10^{40}
$L_{\rm e}$ (erg s ⁻¹)	5.3×10^{41}	2.3×10^{41}	6.3×10^{41}	1.5×10^{43}	2.1×10^{43}
$L_{\rm p}$ (erg s ⁻¹)	1.6×10^{41}	6.3×10^{41}	1.4×10^{41}	3.9×10^{42}	5.0×10^{42}
$L_{\rm kin}$ (erg s ⁻¹)	7.0×10^{41}	8.6×10^{41}	7.7×10^{41}	1.9×10^{43}	2.6×10^{43}