THE GEV TO TEV VIEW OF MISALIGNED AGN ELEONORA TORRESI, PAOLA GRANDI (INAF-OAS)

OAS Very-High Energy Meeting, 9 June 2022

MISALIGNED AGN

Beckmann & Shrader 2013

- Radio galaxies and steep spectrum radio quasars;
- Resolved and possibly symmetrical structures in radio maps;
- Radio spectral indices $\alpha_r > 0.5$

RADIO

P_{178MHz}=10²⁵ W Hz⁻¹ sr⁻¹

Fanaroff & Riley (1974)

LERG

low-excitation radio galaxies

Laing+ 1994; Jackson&Rawlings 1997; Buttiglione+2009

Heckman & Best 2014

HERG

high-excitation radio galaxies

FRO

- FRO are **compact** radio sources: they lack the radio extension (but they are not young) Baldi & Capetti 2009, 2015; Ghisellini 2011
- FRO represent the bulk of the RL AGN population in the local Universe (i.e. 80% of the sources appears unresolved at the 5" FIRST resolution) Baldi et al. 2018
- FRO are similar to FRI in the optical and X-ray properties Baldi & Capetti 2009; Torresi et al. 2018
- The deficit of the extended radio emission has been not explained yet...
 - FRO could be short-lived and/or recurrent episodes of AGN activity, not long enough for radio jets to develop at large scales (Sadler+14; Sadler16)
 - FRO produce slow jets experiencing instabilities and entrainment in the dense interstellar medium of the host galaxy corona that causes their premature disruption (Bodo+2013; Baldi+15; Baldi+18)

A FRO, Tol1326-379, detected in y-rays Grandi et al. 2016

The large jet inclination angle disfavors the detection of MAGN at high energies (> 100 MeV)

$$\delta = 1/\gamma(1-\beta \cos\theta)$$

 $\gamma = (1 - \beta^2)^{-1/2} =$ Lorentz factor $\beta = v/c =$ bulk velocity

ONLY 3 RADIO GALAXIES DETECTED BY EGRET

EGRET All-Sky Gamma-Ray Survey Above 100 MeV

Before Fermi, some FRI and a few FRII were suggested to have fluxes above the LAT sensitivity threshold

(Stawarz+2003,2006; Ghisellini+2005; Grandi & Palumbo 2007)

MAGN ARE GAMMA-RAY EMITTERS

After 15 months of survey Fermi/LAT observed 11 MAGN

011	ma			T T b
Object	TS	Г	Flux ^a	Log Lum
			(> 100 MeV)	(100 MeV-10 GeV)
3C 78/NGC 1218	35	1.95 ± 0.14	4.7 ±1.8	42.84 ±0.38
3C 84/NGC 1275	4802	2.13 ± 0.02	222 ±8	44.00 ±0.04
3C 111	34	2.6 ± 0.2	40 ± 8^{c}	44.00 ±0.27
3C 120	32	2.7 ± 0.3	29 ±0.17	43.43 ±0.58
PKS 0625-354d	97	2.1 ± 0.2	5 ±1	43.7±2.5
3C 207	79	2.5 ± 0.1	23.7 ±3.9	46.44 ±0.16
PKS 0943-76	65	2.83 ± 0.16	55 ±12	45.71±0.22
M87/3C 274	194	2.21 ± 0.14	23.9 ± 6.2	41.67±0.26
CENA	1010	2.75 ± 0.04	214 ± 12	41.13±0.06
NGC 6251	143	2.52 ± 0.12	36 ±8	43.30 ± 0.22
3C 380	95	2.5 ± 0.3	31 ± 18	46.57± 0.59

 $a - \times 10^{-9}$ Phot $cm^{-2} s^{-1}$

^b - erg s⁻¹

^c - Flux was estimated keeping the spectral slope fixed

d - Likelihood analysis limited to the 300 MeV-100 GeV. Flux (> 300 MeV); Lum extrapolated down to 100 MeV

Abdo et al. 2010

Contact authors: P. Grandi, G. Malaguti, G. Tosti, C. Monte

MAGN are generally **faint** and **steep** in the GeV band -> de-boosted version of blazars

FERMI/LAT PREFERENTIALLY DETECTS FRI

Distance/faintness effects cannot explain the scarcity of FRII radio galaxies in the GeV sky

Different jet activity
 Different jet structure

Grandi & Torresi 2012

Although MAGN represent a few percent of the RL AGN population at GeV and TeV energies, they offer the unique opportunity to study γ-ray emission processes at different sites from sub-pc up to kpc scales.

Localizing where gamma-ray photons are dissipated with respect to the black hole has a strong impact on the physical models invoked to explain the HE emission.

THE MULTI-WAVELENGHT FLARE OF 3C 111

Grandi, Torresi & Stanghellini 2012

- 3C 111 was detected by Fermi/LAT exactly when mm-to-X-ray fluxes were increasing -> co-spatiality of the events;
- the γ-ray outburst occurred after a strong decrease (dip) of the X-ray flux and during the ejection of a new radio blob;

THE MULTI-WAVELENGHT FLARE OF 3C 111

Grandi, Torresi & Stanghellini 2012

THE MULTI-WAVELENGHT FLARE OF 3C 111

- 3C 111 was detected by Fermi/LAT exactly when mm-to-X-ray fluxes were increasing -> co-spatiality of the events;
- the γ-ray outburst occurred after a strong decrease (dip) of the X-ray flux (Chatterjee et al. 2011) and during the ejection of a new radio blob;
- the jet modification roughly follows the γ-ray flux evolution, revealing a direct connection between the outburst in the GeV band and the ejection of the radio knot.
 - The emitting region is compact:
 R < Δtδc < 0.1 pc , δ ~ 3 (Jorstad et al. 2005);
 - the distance of the emitting zone from the BH is ~0.3 pc.

MAGN AT TEV ENERGIES

TEVCAT

All FRI; z<0.03

Time [MJD]

All FRI; z<0.03

All FRI; z<0.03

GeV) [cm⁻² s⁻¹]

F (>300

All FRI; z<0.03

GeV) [cm⁻² s⁻¹]

F (>300

RADIO GALAXIES WITH THE CHERENKOV TELESCOPE ARRAY

Angioni, Grandi, Torresi, Vignali, Knödlseder 2017

- Aim: evaluate the impact of the new generation CTA on the MAGN class, and propose possible observational strategies to optimize their detection
- Starting sample: 17 Fermi-LAT MAGN at z<0.15
- F_{1-100 GeV}~10⁻¹⁰-10⁻⁸ ph cm⁻² s⁻¹
- **F**=1.8-2.8

SIMULATION

- Energy range: 0.02-100 TeV
- CTA-North & CTA-South 50 hours
- ctools
- standard unbinned likelihood analysis

Source	$k^b_{ m PL}$	$\mathrm{TS}_{\mathrm{PL}}$	$TS_{1 \ TeV}$	$TS_{0.5\ {\rm TeV}}$	$TS_{0.1 \ \mathrm{TeV}}$]
3C 78	47	3113	256	96		
Fornax \mathbf{A}^{c}	20	1671	100	25		
B2 0331+39	24	1049	65			
3C 111	1.6					
3C 120	1.9					
Pictor A	3.3					
PKS 0625-35	300	154480	16987	7294	287	Dyrda+2015
3C 189	13	321				
3C 264	33	2129	128	44		Mukherjee 2018
Tol 1326-379	0.7					(ATel #11436)
Cen B	48	4066	520	212		
3C 303	32	3010	134	55		
NGC 6251^d	55.3				25	

PKS 0625-35 -11s⁻¹) cm⁻² (erg -12F(E) 3FGL + 2FHL data H.E.S.S. data 더 **CTA** simulations -13່ ບານການ ບ່ານນ້ຳການ ເຈົ້າເພື່ອງໃນການ 0.1 100 1000 10 10^{4} 1 E (GeV)

- CTA can provide high quality spectra for several MAGN
- ➢ Extension of their SED above 1 TeV
- Deeper investigation of the nature of the second emission peak

TS>100 (10σ) TS>25 (5σ)

 $TS=2Log(L/L_0)$

Diagnostic plot to verify the detectability of any AGN in the TeV band, with known photon index and flux in the 1-100 GeV band

- > Hard sources (Γ_{Fermi} <2.1) can be easily revealed down to $F_{1-100 \text{ GeV}}$ ~10⁻¹⁰ ph cm⁻² s⁻¹
- \succ MAGN with $\Gamma_{\rm Fermi}{\sim}2.4{\text -}2.8$ require $F_{1{\text -}100~GeV}{\text >}10^{\text -9}$ ph cm $^{\text -2}$ s $^{\text -1}$ to be detected by CTA
- conservative approach, simple extrapolation of the Fermi-LAT power-law;
- a larger number of sources could be detected during flaring states

- These results are confirmed considering an expanded sample of MAGN (4FGL) Angioni 2020
- ➢ Finally, detection of FRII

Long exposures (~50 hours) for steep and faint sources

Easily achieved through CTA **subarrays** (LST+MST)

The number of predicted new TeV detections should be treated as a lower limit

Improved simulations on 4FGL MAGN confirm these results; CTA would triple the number of TeV-detected radio galaxies (Angioni 2020)

THE HIGH-ENERGY VIEW OF FRO

Baldi, Torresi, Migliori, Balmaverde 2019

Only one FRO associated with a Fermi-LAT γ -ray counterpart, up to now Grandi et al. 2016

The γ -ray luminosity is similar to FRI (L $_{\gamma}\sim10^{42}$ erg s^-1) but with a steeper spectrum (F $\sim2.8)$

Tol1326-379 could be oriented at a large inclination angle (as CenA, θ~50-80 deg)

or

• if the orientation angle is small (as M87, θ ~15-25 deg) the SED of these two classes of sources are intrinsically different, i.e. different physical conditions of the high-energy dissipation regions.

Logv [Hz] A detection with current IACT seems unlikely. However, our knowledge of the FRO class at high energies is still very limited, hence it will be important to investigate these sources with more sensitive observatories, such as CTA in the near future.

24

Tol1326-379

(eritas/50h)

28

H.E.S.S.

26

-10.5

-11.0

-11.5

-12.0

-12.5

-13.0

20

22

-og *v*F_{*v*} [ergcm⁻²s⁻¹]

SUMMARY

- MAGN are challenging targets for TeV observations; they represent a unique γ-ray population offering important physical insight w.r.t. blazars
- **CTA** is expected to improve our ability to reveal MAGN in the TeV sky thanks to its increased sensitivity -> population studies!
- HE/VHE studies of MAGN allow for deeply investigate the **accretion/ejection link**; results on other wavebands point out that accretion is the first driver of the FRI/FRII separation (see, e.g., Macconi et al. 2020; Grandi et al. 2021)
- The SED extension in the TeV regime will allow studying (i) acceleration processes in the jet; (ii) the jet structure and its link with the accretion type
- The **radio/γ-ray synergy** is fundamental; in these bands, the jet is not contaminated by thermal effects
- MAGN have been proposed as **neutrinos'** emitters: relativistic jets are likely powerful particles accelerators (e.g., Fraija et al. 2016; Hooper 2016; Murase 2018; Matthews et al. 2018; Tavecchio et a. 2018).

THANK YOU!