Cherenkov Telescope Array Observatory: the World's largest VHE gamma-ray observatory

Roberta Zanin – CTAO Project Scientist Roberta.Zanin@cta-observatory.org

Outline

• PART I

intro to the Cherenkov Telescope Array Observatory

- PART II
 - **CTAO performance**
- PART III CTAO science case (surveys, transients, pevatrons)
- Part IV:

first results from LST-1: the first CTAO telescope under commission

PART I The first ground-based gamma-ray observatory

CTA Observatory

CTA Observatory

- CTAO will deliver science-ready data & science analysis tools (SATs) to the worldwide scientific community
 - most of the observing time is allocated for scientists working in contributing countries
 - observations will have a proprietary period of about 1 year
 - once the proprietary period will be expired, data will become publicly available through the CTAO science portal

CTA Observatory

- CTAO will deliver science-ready data & science analysis tools (SATs) to the worldwide scientific community
 - most of the observing time is allocated for scientists working in contributing countries
 - observations will have a proprietary period of about 1 year
 - once the proprietary period will be expired, data will become publicly available through the CTAO science portal
- CTAO will respond/provide science alert in less than 1'

Observing time allocation

- the observing time will be allocated on the basis of scientific proposals reviewed by the Time Allocation Committee (TAC) and selected to maximize the science return
 - all scientific proposals will be reviewed by the TAC
- Astronomical observations are grouped into Observation Periods (OPs)
 - each OP lasts about one year
 - each OP is associated to an Announcement of Opportunity (AO) call issued by the Observatory through which the application for observing time is handled

Guaranteed Time Observations (GTOs)

- GTOs: a fraction of the observing bime arising from contractual obligations of CTAO ERIC.
 - from Hosting Agreements with IAC and ESO

International Community Observing Time (Cta

- International Community Observing Time (ICOT) is a small fraction of the observing time that is available by meritorious proposals by researchers of non-contributing-countries, and shall be approved by the CTAO ERIC Council.
 - $\circ~$ The 5% in the pie chart TBD

CTAO Southern array

Contributing Countries (CCs)' Time

- CCs' Time is split into 2 categories depending on the type of proposal: KSP time and Open CCs' Time
- the fraction of KSP time versus Open CCs' time is still an open point
- KSP time is given to one unique scientific collaboration as reward for in-kind contributions to the CTAO construction project

CTAO Southern Array

CTAO construction phase

- CTAO construction scope is agreed
- The construction phase will start with the establishment of the final legal entity: CTAO European Research Infrastructure Consortium (ERIC)

- Step 2 application submitted last week \rightarrow ERIC operative beginning 2023
- last about 5 yr
- Early science operations foreseen during the construction phase

The two initial CTAO arrays: the Alpha Configuration

CTAO Northern Array

- 4 LSTs + 9 MSTs
- 0,25 km² footprint
- focus on extra-Galactic science

CTAO Southern Array

- 14 MSTs + 37 SSTs
- 3 km² footprint
- focus on Galactic science

CTA+ (PNRR): the Beta Configuration

CTAO Northern Array

• 4 LSTs + 9 MSTs

DPERATION BUILDING

•

- 0,25 km² footprint
- focus on extra-Galactic science

CTAO Southern Array

- 2/3 LSTs + 14 MSTs + 46 SSTs
- 3 km² footprint
- focus on Galactic science

CTA+ (PNRR): training Italian scientific community

- training young generation of scientists
 - International PhD school on gamma-ray astronomy
 - ~ about 10* new PhD students on gamma-ray astronomy around Italy
 - Italian network of PhD students on gamma-ray astronomy
- boost scientific enviromenet around the HQs in Bologna
 - 1 RTD-A* at UniBO + 4* postdocs
 - Specific course on gamma-ray astronomy for the master?
- support EPO programs related to gamma-ray astronomy

Right moment to get onboard!

PART II CTAO performance

PART III CTAO Science Case

CTAO main scientific themes

COSMIC PARTICLE ACCELLERATION

- How & where particles are accelerated?
- How do they propagate?
- What is their impact on the environment?

PROBING EXTREME ENVIROMENTS

- Which are the processes close to neutron stars and black holes?
- Which are the processes in relativistic jets, winds and explosions
- What are the cosmic voids?

PHYSICS FRONTIERS - BEYOND THE STANDARD MODEL

- What's the nature of the dark matter? How is it distributed?
- Do axion-like particles exist?
- Is the speed of light a constant for high-energy photons?

CTAO Science Program

CTAO surveys

24

- Original idea:
 - 25% sky coverage: b> 5 ° & ||<90°
 - targeted integral sensitivity 6 mCrab
 - pointing direction uniformly distributed on a grid of 3.7° separation 60% by the Southern array and 40% by the Northern array

see talk by Patrizia

Defining the BL LAC luminosity function

(Ajello, M., et al. 2014, ApJ, 780, 73)

- Luminosity function:

$$\Phi(L_{\gamma}, z=0, \Gamma) = \frac{A}{\ln(10)L_{\gamma}} \left[\left(\frac{L_{\gamma}}{L_*}\right)^{\gamma_1} + \left(\frac{L_{\gamma}}{L_*}\right)^{\gamma_2} \right]^{-1} e^{-0.5[\Gamma - \mu(L_{\gamma})]^2/\sigma^2}$$

- Luminosity-Dependent Density Evolution (LDDE):

$$\Phi(L_{\gamma}, z, \Gamma) = \Phi(L_{\gamma}, z = 0, \Gamma) \times e(z, L_{\gamma})$$

$$e(z, L_{\gamma}) = \left[\left(\frac{1+z}{1+z_c(L_{\gamma})} \right)^{-p_1(L_{\gamma})} + \left(\frac{1+z}{1+z_c(L_{\gamma})} \right)^{-p_2(L_{\gamma})} \right]^{-1}$$

- Pure Luminosity Evolution (PLE):

$$\Phi(L_{\gamma}, z, \Gamma) = \Phi(L_{\gamma}/e(z), \Gamma).$$

$$e(z) = (1+z)^{k_d} e^{z/\xi}, \qquad \qquad \mathbf{k}_d = k^* + \tau \times (\log_{10}(L_\gamma) - 46).$$

see talk by Patrizia

BL LAC SOURCE DISTRIBUTIONS

Credits to L.A. Pereira, V. de Souza, E. Lindford, T. Hassan

Personal considerations:

- Excellent work to reproduce the original assumptions with latest IRFs and SATs
 - now beta configuration needs to be considered
 - LST performance in the current IRFs a bit too optimistic
- Is there margin for observation strategy optimization?
 - North vs South
 - 25% sky coverage versus sensitivity
 - check overlap with the GC center survey
- How can we fit the divergent array pointing mode?

28

Divergent array pointing mode

29

Credits to A. Domini, I. Burelli, F. Longo, T. Vuillaume

Galactic plane survey

Galactic Plane Survey

Source population studies

transformational jump in population size to the PWNe field

see talk by Barbara

- SNRs up to other side of the Galaxy
- 5-10 times better flux sensitivity

fundamental a good understanding of the interstellar emission model

Credits to B. Olmi, F. Acero, L. Tibaldo, Q. Remy, ... CTAC Galactic WG

CR propagation

- Recent theoretical developments in interstellar emission modelling informed by LHAASO, Tibet as preparatory work for the study of CR propagation
 - the CTA range is crucial
 - better understanding of unresolved source is required

Credits to P. de la torre Luque, D. Gaggero, G. Morlino, ... CTAC CR WG

Galactic Centre survey

- galactic centre region in terms of simulations is treated as any other part of the Galaxy!
- quite some margin for observational strategy optimization

the Italian community has a huge expertise in GC survey at lower frequencies

see talk Angela & Raffaella

PeVatrons searches

see talk by Barbara

Q: What sources accelerate hadrons up to the knee?

- CR origin: ~100 yr mystery!
- Standard picture: shock-acceleration in SNRs – satisfies power & spectrum
- BUT only few SNRs provide good evidence for hadronic acceleration & only up to <100 TeV

26

PeVatrons searches

see talk by Barbara

- Search for gamma-ray sources with spectral cutoff of at least 50 GeV
 - Candidate selection on GPS results (10h exposure) based on the lower limit of spectral cutoff

- Spectral measurements may not be enough to disentangle between hadronic and leptonic origin
- morphological studies will provide important clues given the CTAO's excellent angular resolution

Transients in the multi-messanger era

GRBs

Q: How do the prompt and afterglow dynamics work?

GW COUNTERPARTS

Q: What's the link between the progenitor event and the emerging GRB?

UHE NEUTRINOS COUNTERPARTS

Q: What's the origin of the TeV-PeV cosmic neutrinos?

Tidal Disruption Event - Stein+ 2021

NOVAE

Q: Is there a population of VHE novae?

RS Oph - H.E.S.S. Coll. ATEL #14844

GW - GRB - UHE v follow-up observations (CCC

GW - GRB - UHE v follow-up observations

SHORT GRBs 5h 5h 3h 3h 2h 2h RN 1h 1h 30m 30m of GRBs dete ge of GRBs det 10m 10m Texp **F**exp 5m 5m 2m 2m 1m 1m 30s 30s 10s 10s 5 5 3 4 6 6 4 W. B & 5 65 Nr 10 10 10 00 00 (d) CTA North, $z20^\circ$, ($\theta_{view} < 45^\circ$) (c) CTA North, $z20^{\circ}$, ($\theta_{view} < 10^{\circ}$)

very large parameter phase space

- intrinsic physical parameters (θ_{view} , Luminosity, Density)
- observational parameters

prospects for detection are very promising!

CTAO will have the opportunity to shed light on the physics behind the most extreme accelerators in the Universe

UHE v events 1.0 1057 zenith angle 20° Luminosity [erg/yr] 1055 1053 -0.8 1051 1049 1047 1057 zenith angle 40° 0.6 1055 1053 1051 1049 0.4 1047 1057 zenith angle 60° 1055 -0.2 1053 1051 1049 1047 0.0 10-13 10-11 10-9 10-7 10 fo Density [Mpc⁻³]

GW - GRB - UHE v follow-up observations (Cta

- Optimal pointing pattern to cover the largest total alert uncertainty region (10-100 deg²) (*Patricelli+2018, Bartos+2019*)
- o **Optimal pointing cadence:** exposure time selected to achieve 5σ detection
- Site coordination to prioritize best observational conditions
 (sky brightness, zenith angle, sky quality) to guarantee lowest energy threshold
- Phenomenological considerations: galaxy density for GW events
- Divergent array pointing mode to increase the FoV

Credits to B. Patricelli, A. Stamerra, F. Longo, ... CAC transient WG

• galactic transients (microquasars, magnetar flares, ...)

- gamma-ray binaries \rightarrow search for periodic emission
 - Optimal laboratories to study time-dependent formation of pwne
- AGN flaring events

see talk by Patrizia

Is there any interest?

- pulsars
 - a huge potential but some preparatory work needs to be done not really planned
- dark matter searches
- gamma-ray cosmology (EBL, IGMF,...)

Much more

see talk by Vito

PART IV LST-1 first results

LST-1 already performing science

LST-1 already performing science

Always starting from the Crab as reference source to verify the scientific performance

&

Cross calibration LST-1 with MAGIC

Pulsar: energy threshold ~50 GeV

combined LST-1 – MAGIC analysis

LST-1 already performing science

Several known gamma-ray sources already detected, mainly AGNs

First follow-up of GRBs and neutrino golden events

GRB 201216C
GRB 210217A
GRB 210511B
IC 210210A

- detected by MAGIC ۲ pointing in < 1'
 - z = 1.1

۲

۲

LST-1 pointed at it 22 hr after the GRB event

CTAO: a phase transition in VHE γ -ray astronomy

In-depth understanding of known objects and their mechanisms

Expected discoveries of new object classes

The fun part: Things we haven't thought of

Thank you

3 telescope designs

3 telescope prototypes

Small-Sized Telescope

Medium-Sized Telescope

Large-Sized Telescope

Detection of very-high-energy gamma-ray emission from BL Lac with the LST-1

> ATel #14783; Juan Cortina for the CTA LST collaboration on 13 Jul 2021; 21:03 UT Credential Certification: Juan Cortina (Juan.Cortina@ciemat.es)

A&A 634, A22 (2020)

First detection of the Crab Nebula at TeV energies with a Cherenkov telescope in a dual-mirror Schwarzschild-Couder configuration: the ASTRI-Horn telescope

[0] S. Lombardi^{1,2,*}, O O. Catalano^{3,*}, O S. Scuderi^{4,*}, D L. A. Antonelli^{1,2,*}, G G. Pareschi⁵, E. Antolini⁶, L. Arrabito⁷, G. Bellassal⁸, K. Bernlöhr⁹, C C. Bigongiari¹, B. Biondo³, G G. Bonanno⁸, G. Bonnoli⁵, G. M. Böttcher¹⁰,

3.0 m

Morphological & Spectral studies

-40.5

250 5

0.00

259.0

3.75

258.5

7.50

5 pc

257 5

-40.5

259.5

15.00 0.00

259.0

2.75

RA (J2000) [degree]

8.25

257.5

11.00

258.0

258.5

5.50

RA (J2000) [degree]

11.25

258 0

H.E.S.S.

RA (J2000)

.39*0

ĕ

-40°0

sub-arcminute resolution spatial resolved spectroscopy

la

<10% energy resolution

Dark matter search

- WIMP is not ruled out (Leane+ 2018)
- The TeV mass domain is unexplored

Dark matter search

• CTAO will constrain the WIMP paradigma in case of non-detection

from: Science with CTA www.worldscientific.com/worldscibooks/10.1142/10986