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ABSTRACT With the help of machine learning systems, we can examine data, learn from that data, and make decisions. Now machine 
learning projects have become more relevant to various use cases, but to manage them, especially if numerous, is a challenging task. For 
this reason, several Machine Learning Operations (MLOps) tools    have been developed. These tools are the main platforms, hosting the 
full machine learning process lifecycle, starting with data management, and ending with model versioning and deployment. 

NEANIAS (Novel EOSC Services for Emerging Atmosphere,  Underwater  & 

Space Challenges) is an ambitious project that comprehensively addresses the 

challenges set out in the ‘Roadmap for EOSC’  foreseen  actions.  NEANIAS    

drives the co-design and delivery of innovative thematic services, derived from 

state-of-the-art research assets and practices in three major sectors: 

Underwater research, Atmospheric research and Space research. 

The Machine learning core services are composed by a JupyterHub 

instance (C3.1 named AI-Gateway) that enable different profile servers to: 

(C3.2) Serve machine learning model in production enviroment. 

(C3.3) Enable a deep learning training framework using a Horovod 

cluster.  

(C3.4) Perform distributed calculations using Apache Spark. 

All these services, combined and integrated, are used for astrophysics use 

cases. In particular, two environments were integrated in C3.1 to classify radio 

astronomical sources, galaxies and image artefacts. These are based on two 

deep learning models tailored to object detection (based on maskRCNN) and 

semantic segmentation (based on Tiramisu) and trained on radio dataset 

from the Square Kilometre Array (SKA) precursors.  

Kubernetes is the chosen container orchestration platform to run these set of 

services. The Kubernetes platform has been deployed on top of the OpenStack 

cloud infrastructure and these two platforms are provided and maintained by 

GARR. 

               

                                                 C3.1 AI-Gateway JupyterHub instance for Neanias 
 

MODEL SERVING is a platform that simplifies ML model deployment and 

enables to serve models at production scale in minutes. Model serving 

provides different libraries to package the model, serving it offline in the 

development environment or online using a Kubernetes cluster. The model is 

served using flask and supports micro-batching mechanisms to perform 

prediction, and it automatically generates a deployment endpoint signed with 

authorized SSL. Model serving is implemented with the following technology 

stack: 

BentoML: an open platform that simplifies ML model deployment and 

enables to serve models at production scale in minutes 
MinIO: a High Performance Object Storage used to store BentoML artifacts 

Yatai Server: the BentoML backend 

gRCP Proxy: a proxy between C3.1 (JupyterHub) and Yatai service  that 

permits to authorize and authenticate client requests 

GitLab CI/CD: used to deploy or destroy the machine learning model on the 

Kubernetes platform 

Kubernetes: an open-source system for automating deployment, scaling and 

management of the aforementioned containerized applications 

GitLab CI for deploy and destroy the model on Kubernetes platform 
 

With the Model Serving solution the Data Scientist can create 

different instances of the same model and deploy all models on 

the Kubernetes cluster and run the prediction using the model 

API. 

The API are defined by the Data Scientist so can use different 

type of data structures as DataFrame or a simple path that 

contains the data to use for prediction. WeDav is used as 

webservice, and, currently NextCloud is the web storage  service 

and the directories can be mount using the WebDav protocol. 
 
 

Model Served using Model Serving 

 

The model serving have correctly integrated the Tiramisu 

model. Tiramisu introduces a variation in the U-Net 

architecture, by employing a sequence of DenseNet blocks, 

rather than standard convolutional blocks in both downsampling 

and upsampling paths. The Tiramisu network consists of a 

downsampling path for feature extraction and an upsampling 

path for output generation, with skip connections. This 

contributes to making the network require less parameters, as 

it reuses feature maps from earlier layers, freeing deeper layers 

from the need to learn redundant features. The model deployed 

give in input the path directory that contains radio astronomical 

images of our galaxy and the model save the prediction in an 

output directory returned by the prediction API. 

 
 

 

 

 

CONCLUSIONS The Model Serving can provide an easy way to turn the ML model into production-ready API endpoint and permits to standardize 

model packaging and ML service definition to streamline deployment, deploy and operate ML service workload at scale on Kubernetes using an 

automatic GitLab CI. 
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