
F. Caronte1, R. Messineo1, J. Kovacs 2, E. Sciacca3

francesco.caronte@altecspace.it, rosario.messineo@altecspace.it, jozsef.kovacs@sztaki.hu, eva.sciacca@inaf.it

ABSTRACT With the help of machine learning systems, we can examine data, learn from that data, and make decisions. Now machine
learning projects have become more relevant to various use cases, but to manage them, especially if numerous, is a challenging task. For
this reason, several Machine Learning Operations (MLOps) tools have been developed. These tools are the main platforms, hosting the
full machine learning process lifecycle, starting with data management, and ending with model versioning and deployment.

NEANIAS (Novel EOSC Services for Emerging Atmosphere, Underwater &

Space Challenges) is an ambitious project that comprehensively addresses the

challenges set out in the ‘Roadmap for EOSC’ foreseen actions. NEANIAS

drives the co-design and delivery of innovative thematic services, derived from

state-of-the-art research assets and practices in three major sectors:

Underwater research, Atmospheric research and Space research.

The Machine learning core services are composed by a JupyterHub

instance (C3.1 named AI-Gateway) that enable different profile servers to:

(C3.2) Serve machine learning model in production enviroment.

(C3.3) Enable a deep learning training framework using a Horovod

cluster.

(C3.4) Perform distributed calculations using Apache Spark.

All these services, combined and integrated, are used for astrophysics use

cases. In particular, two environments were integrated in C3.1 to classify radio

astronomical sources, galaxies and image artefacts. These are based on two

deep learning models tailored to object detection (based on maskRCNN) and

semantic segmentation (based on Tiramisu) and trained on radio dataset

from the Square Kilometre Array (SKA) precursors.

Kubernetes is the chosen container orchestration platform to run these set of

services. The Kubernetes platform has been deployed on top of the OpenStack

cloud infrastructure and these two platforms are provided and maintained by

GARR.

 C3.1 AI-Gateway JupyterHub instance for Neanias

MODEL SERVING is a platform that simplifies ML model deployment and

enables to serve models at production scale in minutes. Model serving

provides different libraries to package the model, serving it offline in the

development environment or online using a Kubernetes cluster. The model is

served using flask and supports micro-batching mechanisms to perform

prediction, and it automatically generates a deployment endpoint signed with

authorized SSL. Model serving is implemented with the following technology

stack:

BentoML: an open platform that simplifies ML model deployment and

enables to serve models at production scale in minutes
MinIO: a High Performance Object Storage used to store BentoML artifacts

Yatai Server: the BentoML backend

gRCP Proxy: a proxy between C3.1 (JupyterHub) and Yatai service that

permits to authorize and authenticate client requests

GitLab CI/CD: used to deploy or destroy the machine learning model on the

Kubernetes platform

Kubernetes: an open-source system for automating deployment, scaling and

management of the aforementioned containerized applications

GitLab CI for deploy and destroy the model on Kubernetes platform

With the Model Serving solution the Data Scientist can create

different instances of the same model and deploy all models on

the Kubernetes cluster and run the prediction using the model

API.

The API are defined by the Data Scientist so can use different

type of data structures as DataFrame or a simple path that

contains the data to use for prediction. WeDav is used as

webservice, and, currently NextCloud is the web storage service

and the directories can be mount using the WebDav protocol.

Model Served using Model Serving

The model serving have correctly integrated the Tiramisu

model. Tiramisu introduces a variation in the U-Net

architecture, by employing a sequence of DenseNet blocks,

rather than standard convolutional blocks in both downsampling

and upsampling paths. The Tiramisu network consists of a

downsampling path for feature extraction and an upsampling

path for output generation, with skip connections. This

contributes to making the network require less parameters, as

it reuses feature maps from earlier layers, freeing deeper layers

from the need to learn redundant features. The model deployed

give in input the path directory that contains radio astronomical

images of our galaxy and the model save the prediction in an

output directory returned by the prediction API.

CONCLUSIONS The Model Serving can provide an easy way to turn the ML model into production-ready API endpoint and permits to standardize

model packaging and ML service definition to streamline deployment, deploy and operate ML service workload at scale on Kubernetes using an

automatic GitLab CI.

 (3) (2)

)

(1)

Acknowledgements This work has been fully supported by NEANIAS,
funded by the European Union's Horizon 2020 research and innovation

program, under grant agreement No 863448.

mailto:francesco.caronte@altecspace.it
mailto:rosario.messineo@altecspace.it
mailto:eva.sciacca@inaf.it
https://www.neanias.eu/
https://www.neanias.eu/
https://ai-gateway.neanias.eu/
https://ai-gateway.neanias.eu/

