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1. Galaxy Clustering

• Studying to what extent galaxies are clustered to-
gether throughout the Universe can reveal a great
deal of information about the astrophysical pro-
cesses that define their evolution and the cosmo-
logical context they exist in.

• The observed galaxy distribution is often sum-
marised by statistics like the two-point correla-
tion function, or its Fourier space equivalent the
power spectrum. Figure 1 shows an example of
the power spectrum multipoles ; these multipoles
are a result of a convolution of the 2D power spec-
trum measured from BOSS galaxies and Legendre
polynomials Ll.

• Comparing theoretical predictions for summary
statistics like the correlation function and the
power spectrum to those from observations al-
lows us to put constraints on a cosmological
model to describe the observed Universe.

Fig. 1: Power spectrum multipoles measured from northern galactic

cap (NGC) BOSS data. The points with errorbars show the

measurement, whilst the solid lines show a best-fit model. Plot from

[4]

2. Parameter Inference

• The goal when carrying out parameter inference
is to find the posterior distribution P (Φ|x). With
Φ being the parameters of our theoretical model,
and x being our observed data.

• Generally P (Φ|x) is calculated via sampling
techniques such as Markov Chain Monte Carlo
(MCMC).

• The number of theoretical model parameters for
astrophysical and cosmological problems can be
large, and many of these parameters can be
highly correlated. In such cases many samples,
and thus many model evaluations, are needed for
MCMC chains to reach convergence.

• For all but the most efficient theoretical models

parameter inference is expensive!
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3. EFTofLSS

• The Effective Field Theory of
Large Scale Structure (EFTofLSS) is
a model for galaxy clustering based on
perturbation theory that has had sig-
nificant development over recent years,
and has been used to constrain cosmolog-
ical parameters from BOSS and eBOSS
data (see for example [1]).

• EFTofLSS predictions can be repre-
sented as a combination of a series of
bias parameters bn that do not depend
on cosmology, with a series of compo-
nents Pn,l that do depend on cosmology.
Such that the power spectrum multipoles
are given by

Pl(k) =
∑
n

bnPn,l(k) .

• PyBird is a public implementation of the
EFTofLSS model. Predictions for the
monopole and quadrupole of the galaxy
power spectrum can be made in O(1s).
This is fast enough to make inference
via MCMC possible, but slow enough to
mean that significant resource would be
required (likely time on a HPC cluster).

4. Cosmic Emulation

• Emulation is a technique that was first proposed to cope with the large
computational cost of cosmological simulations, and indirectly use their
outputs to do cosmological inference [3].

• An emulator can be thought of as a sophisticated interpolation scheme
that aims to rapidly reproduce the outputs of a computationally ex-
pensive model. The emulator then acts as a surrogate model which is
evaluated when carrying out inference.

• Simple neural networks (multilayer perceptrons with small numbers of
layers) make good emulators as they can produce vector outputs, they’re
fast to train and evaluate, and they are capable of approximating smooth
functions.

• With TensorFlow [6] we develop a suite of six neural-network-based
emulators to approximate the bias-independent Pn,l components of the
EFTofLSS model [2]. Emulating these Pn,l rather than the multipoles
directly is advantageous for two main reasons; the dimensionality of each
emulator is reduced, and there is no fixed prior on the bias parameters.
Figure 2 visualises how the six component emulators are used together
to predict the multipoles.
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Fig. 2: Flowchart visualising how each of the component emulators is used together when making

predictions for the monopole P0(k) and quadrupole P2(k) of the galaxy power spectrum. Pale

blue boxes represent inputs, orange boxes component emulators, green boxes analytic operations,

and white boxes outputs. Each emulator predicts a group of Pn,l components that are then

combined with the bias parameters bn analytically.

5. Accelerated Inference
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Fig. 3: Corner plot showing posterior probability distributions from mock analysis using suite of

EFTofLSS componenet emulators. Grey dashed lines show the locations of the true cosmological

parameters of the mocks. The contour levels represent 1σ and 2σ

• We can test the accuracy of the EFTofLSS
component emulators by running mock
cosmological parameter inference with
data coming from high resolution cosmo-
logical simulations.

• The mock multipoles are measured from a
halo occupation distribution (HOD) mock;
produced with a DESI ELG like HOD and
simulation box with 3 Gpc h−1 sides. The
covariance matrix is calculated from a set
of approximate mocks.

• The MCMC is run with an ensemble slice
sampling code: zeus [5]. Thanks to Ten-

sorFlow optimisation the emulators are ef-
ficient when making batch predictions. To
fully exploit this we run the MCMC with
a large number of walkers (560 for 14 free
parameters) after burn-in is complete.

• Figure 3 shows the posterior distributions
of some of the relevant cosmological param-
eters. The truth (grey dashed lines) is well
recovered within 1σ; indicating any pre-
diction errors are not large enough to in-
duce statistically significant biases in the
constrained cosmology.

• The MCMC required O(106)model evalu-
ations, and took ∼ 30minutes on a laptop.
To generate the same number of samples
with PyBird would take ∼ 2 weeks on the
same laptop.


