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GaMPEN is a deep learning framework that

   • Can accurately determine Bayesian posteriors          
      for morphological parameters of galaxies 

   • Does not need large amounts of pre-classified    
      data for training

   • Automatically crops input images to focus on 
      the galaxy of interest          the galaxy of interest    

   • Has been tested extensively on HSC data and 
     can be easily applied to other datasets

Primary Takeaways Results

GaMPEN residuals are high for LB/LT  values very close to 0 or 1. 
By making quantitative predictions only in the range 
0.1 < LB/LT < 0.85, and transforming the predictions in the rest of 
the space (white shaded region) to qualitative labels (e.g., 
“highly disk-dominated”), the typical error decreases. 

The produced labels are > 99% accurate, as shown by the 
confusion matrix on the right.
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The most probable values of the predicted distributions closely track the true 
parameter values. The typical errors produced for LB/LT , Re , and Flux are 0.1, 0.17“, 
and 6.3 X 104  nJy, respectively.

 

Coverage probabilities (i.e., 
the percentage of times the 
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GaMPENGaMPEN’s estimates of 
posterior distributions are 
accurate & well-calibrated

• GaMPEN accounts for both aleatoric & epistemic 
       uncertainties

      • GaMPEN incorporates the full covariance matrix in its 
         loss function & uses Monte Carlo Dropout

      •  We first train GaMPEN on realistic simulations, and 
         then fine-tune it using real data -- allowing us to train 
         with minimal real data         with minimal real data

      •  The STN in GaMPEN trains with the rest of the 
         framework and needs no additional supervision.
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Studying the morphology of large samples of galaxies at different 
redshifts is crucial to understanding the physics of galaxy formation and 
evolution. 

Although astronomers have increasingly used machine learning for 
morphology determination, most of these algorithms:-
    • provide only broad classifications, without any parameter-estimation
    • do not provide estimates of uncertainties
    • need large amounts of pre-classified training data    • need large amounts of pre-classified training data
    • perform poorly in crowded fields due to the presence of secondary 
      galaxies in the frame

To address these challenges, we have developed the Galaxy Morpohlogy 
Posterior Estimation Network (GaMPEN).  GaMPEN  estimates values 
and uncertainties for a galaxy's bulge-to-total light ratio (LB/LT ), effective 
radius (Re), and flux (F).  
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