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Strong lens mass modeling

Gravitational lensing

Based on general relativity, light
gets deflected by mass. This ef-
fect is called gravitational lensing
and the deflection strength de-
pends on the mass of the lens, for
instance a galaxy.
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Figure 1: Gravitational lensing sketch.

This effect can be used to answer
open questions in astrophysics,
e.g., on dark energy, dark mat-
ter, and the expansion rate of
the Universe. Depending on the
alighnment, the source can ei-
ther be observed distorted or also
multiple times (strong lensing).

Our ML approach

As shown in previous works [1, 2, 3]
on space-based data, machine learn-
ing (ML) can be used to efficiently
predict the values of an adopted lens
mass profile. Therefore, we train a
residual network (ResNet) to pre-
dict these parameters with uncer-
tainties based on the input of LSST-
like ground-based images.

η = (x, y, ex, y, e
x
, ey,

        θ
E
, γ

1
, γ

2
)

output:

input
g

i
z

r

σ= (x, y, eσ
x
, σ

y
, σex, 

     σey, σθE
, σγ1

, σγ2
)

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

3x3 conv

avg pooling

flatten

1. FC

2. FC

3. FC

7 neurons

batch norm

sigmoid

7 neurons

Figure 2: ResNet architecture predicting 7
parameters together with uncertainties.

Automation of the
traditional technique

So far lenses have been primar-
ily modeled by maximum likelihood
optimization, a very time and re-
source consuming procedure. A
detailed analysis can take up to
months of an expert. Thus, this
techniques is not sufficient for the
upcoming decade, such that we de-
veloped semi-automated pipelines
to minimize the user input time.

Figure 3: Example system modeled simul-
taneously in griz with our automated code.

Network performance
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Figure 4: Comparison of the Einstein ra-
dius θE on the simulated test set.
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Figure 5: Comparison of the Einstein ra-
dius θE on 31 real lensing systems.

Conclusion

We present a ResNet predicting
the lens mass and external shear
γ values with uncertainties based
on its LSST-like image. We com-
pare the ResNet predictions of 31
real lenses to traditional obtained
values. This demonstrates the re-
liability of the network and shows
very good results on θE while dif-
ficulties remain on γ. Since the
network needs only fractions of a
second per lens system, we can
handle the expected number of
lenses in the near future.
For further details see [4, 5, 6].

and Photometric redshift estimation

photo-z from images

Good photo-z predictions are
crucial given the huge amount
of objects with only photomet-
ric data and the necessity of a
redshift for nearly all applica-
tions. The traditional method is
through template fitting, while in
recent years great success with
ML was obtained. However, so
far these networks are based on
catalog-level extracted properties
from the image, while we have
trained a convolutional neural
network (CNN) directly on the
images to predict the redshift.

Performance and
comparison
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Figure 6: Performance of NetZmain on the
test set, which are real ground based images
with either spec-z or ∼30 band photo-z.
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Figure 7: Comparison to a well tested hy-
brid photo-z method DEmP [7, 8, 9] on the
exact same test set.

Dedicated networks

Beside NetZmain, trained on all
galaxy types and for a very
broad redshift range (0<z.4), we
present dedicated CNNs NetZlowz
and NetZLRG for, respectively, the
lower redshift range (0<z≤1) and
for luminos red galaxies (LRGs),
which perform even better on their
dedicated sample as NetZmain.

NetZ architecture

Figure 8: Network architecture of NetZ.

Conclusion

We present CNNs that are able
to predict photometric redshifts
of galaxies directly from the im-
age cutout and publish more
than 34 million new photo-z es-
timates from NetZmain. The
performance is competitive with
other well established methods
like DEmP [7, 8, 9], especially
on the high-z range when the
sample is more uniformly dis-
tributed thanks to data augmen-
tation which is not possible on
the catalog level.
For further details and references
see [10].
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