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Decades of observational & theoretical research has explored the relation between a star’s chemical, physical and galactic properties with the presence of orbiting planetary
companions. Certain sources suggest that observed correlations are indicators of the environment of the system’s protoplanetary disc, and subsequently its proclivity to
facilitate planetary formation. This project aims to use the predictive power of machine learning to develop a classifier that uses spectral data of labelled target stars, to
learn to model subtle discriminating markers and predict a binary class (Jupiter host or non-host) for every instance. Two approaches were highlighted: The first method
was to use raw high-resolution stellar spectra as inputs, in order to preserve any inherent information within the spectrum. The second method was to use homogeneous
elemental abundance data curated from a preexisting catalog, and implement a system capable of separating the planetary hosts from comparison stars based solely on the
abundance levels of certain elements. To determine whether using raw high-resolution stellar spectra leads to consistent learning and generalisation, several convolutional
neural networks, particularly for their strengths in image classification, were implemented in a stacked architecture. Every CNN model was assigned a particular spectral range
to collectively cover the entire spectrum, the results of which were then fed into a meta learner to aggregate their votes. Multi-objective optimatization will be used to train a
model using the elemental abundance feature data while imputing incomplete records in an online approach. Cross-examination of both approaches will then be conducted.

Aims & Motivation

It has been a coveted goal for the field to map out the distribution of planet occurrence with all manner of
stellar & orbit parameters [6, 10]. In particular for Jupiter-class exoplanets, there has been several corrob-
orated work reinforcing the hypothesis that certain stellar properties of a planetary-host star yield a higher
probability for gas-giant formation in its primordial protoplanetary disk [4, 1, 2, 5].
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In this work, we apply ML techniques
to develop a classifier capable of dis-
criminating between Jupiter hosts and
comparison stars solely based on the
spectral data collected from the plan-
etary system’s host star. The focus
was placed on gas giant exoplanets
due to the higher overall confidence in
the significance of the primordial link
between stellar chemistry and core
accretion gas-giant formation. Fur-
thermore, with current technological
capabilities, gas giant detection has
lower margins of error and higher
chances for detection. Thus, any la-
belling of such a dataset of stellar
hosts and non-hosts can be done with
greater confidence. We decided to ap-
proach the problem through two dif-
ferent input designs.

The first method was to use raw high-
resolution spectra as direct inputs, and
implement a stacked CNN classifica-
tion architecture to assign a classifica-

tion probability on whether that spectrum’s star 1s a Jovian host. A particular draw to such a design comes
from the fact that if it truly leads to a stable, accurate and precise classifier, such a system could hypotheti-
cally serve as a preliminary check for exoplanet detection.
The second technique which we will apply focuses on the use of elemental abundance data and stellar param-
eters as input features for the host and comparison stars in the dataset. Partially motivated by the work found
in [3], applying this method to the same stars within the spectral dataset will allow for cross-examination of

both input designs.

Dataset

A spectral dataset was compiled using high-resolution optical spec-
tra observed with either the HARPS (High Accuracy Radial ve-
locity Planet Searcher) [9] or FEROS (Fiber-fed Extended Range
Optical Spectrograph) [7] spectrographs mounted on the Euro-
pean Southern Observatory (ESO) La Silla 3.6m telescope and the
ESO/MPI 2.2m telescope respectively. An elemental abundance
dataset was compiled of the same target stars from entries in the
Hypatia Catalog, an unbiased dataset of spectroscopic abundance
data from 233 different literature sources for a total of 9,982 stars
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in the solar neighbourhood and 80 elements & species. We restrict the number of elemental features to 22
elements linked by previous work to correlations with gas-giant core accretion.

HARPS Spectrum  Observation ID: ADP_2014_09_16T11_07_43.607
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A strict methodology was put in place
while selecting spectra, to ensure that
the dataset 1s clean and absent of any
major sources. Multiple spectra for
single targets were allowed, with a
maximum of 25 spectra of each tar-
get star. As this work 1s partly fo-
cused on generalising a model capa-
ble of detecting Jupiters from spectro-
scopic observations, the use of several
spectra of one source can be deemed
acceptable in favour of generating a

trainable dataset. Once the selection process was completed, a dataset of 5,417 instances of 434 stars was
compiled and ready to be prepared for use. It was made sure that labels to the training data are confidently
assigned. As the class distinction selection for this work is whether or not the host star in question has a
Jovian-class companion, it was important that prior observations and analysis were taken into account.

The final step in preparing the spec-
tral dataset for training was to normal-
1ze the data and process it into a model-

readable format.

ity used to collect them. Thus, both
FEROS and HARPS spectra were trun- | I s

It was ensured that
the spectral range & resolution of each
data instance 1s i1nvariant to the facil-
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cated and spectrally binned such that all
spectra comprised of 104,350 datapoints
across the same spectral range (~3781—

6912A). We then generate a fit for the

spectrum’s continuum to then use for

normalization.

Spectral axis

Spectral Classifier Design

The spectral classifier follows a stacked
ensemble classifier design, with the
first-level voters all implementing a con-
servatively deep 1D-CNN design. Each
spectrum was binned into 25 disjoint
subsets, such that the data instances for
each spectral bin were used to train
their respective classifier and validate
the model’s hyperparameter settings for
that particular spectral bin. Each spec-
tral bin 1s fed to the respective first level
CNN classifier, which in turn then as-
signs a classification probability score to
be used as an input feature by the meta
learner. The meta learner then aggre-
gates these probability scores (from all first level classifier which demonstrate any form of generalisation) to
predict a final classification for the data instance.
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online imputation of missing features within the dataset dur-
ing model selection. Once the model 1s trained & tested,
cross-examination with the spectral classifier’s performance
will be conducted.

Preliminary Conclusions

We applied a spectral dataset, compiled alongside a corresponding elemental abundance dataset, in order to
train a classifier capable of discriminating between stars with Jupiter planets and those without. The spectral
classifier shows strong generalisation 1n its’ performance on the validation and test set, albeit without stable
minimization of the loss function. The next step will be to observe how it compares to an abundance data
approach and explore ways to improve the model architecture. We will then test the model on a holdout set
from a third facility in order to check for telescope invariability.
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