
Sample spectra of neutron star (orange),
active star, SNR, and AGN.

Modern X-ray telescopes have detected hundreds of thousands of X-ray sources (e.g.
Evans et al. 2010). These include active galactic nuclei (AGN), supernova remnants (SNRs),
active stars, and compact neutron star and black hole binaries. Common methods to
distinguish these sources are modelling their X-ray spectra or using hardness ratios (HRs)
to estimate the source properties.

Detailed X-ray spectroscopy of thousands of sources is tedious, and HRs could fail
to accurately categorize faint objects. These methods fail to employ the power of CCD
detectors to identify emission lines in X-ray spectra. Machine-learning (ML) tools that can
differentiate line- and continuum-dominated X-ray spectra will be accurate and efficient in
classifying X-ray spectra. Here, we demonstrate the use of artificial neural networks
(ANNs) to distinguish active stars in Orion nebula from AGN in Chandra Deep Field South.

X-ray image of (Left) Stars in Chandra Orion
Ultradeep Project (COUP, Credits: CXC/
Fiegelson et al.) (Right) AGN in Chandra Deep
Field South (CDFS, Credits: CXC/Luo et al.)
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AGN vs. Active star

The X-ray sky

We simulated 100,000
spectra of AGN and
stars from COUP and
CDFS properties, and
used spectra with >100
X-ray counts for training
and testing a 1 hidden
layer, 8-node ANN.

Stars show prominent emission lines from Mg,
Si, S & Fe. AGN have mainly continuum spectra.

Accuracy w.r.t net counts & background

Net classification accuracy of 92% on simulated test set, and 91% on
observed COUP and CDFS spectra. Our algorithm performs best on sources
with net counts greater than 300 and background contribution less than 5%.

ANN model

Role of source properties Conclusions & Future
qTested the use of NN as an accurate and

efficient tool to differentiate AGN and active
star spectra.

q100,000 spectra classified in a few
minutes with ~92% accuracy.

qModel works best for sources > 300
counts & background contribution < 5%

qTest other ML algorithms to increase
accuracy and reduce size of training dataset.

qApply algorithm on other types of sources.
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(Left) ANN model architecture used. It outputs the
probability of source being star or AGN. (Right) The
weights of the trained ANN show that our model picks
out the prominent emission lines for classification.

qNH > 1024 absorbs X-rays with energy, E < 2
keV, leading to difficulties in detection of Fe-
L, Mg & Si lines and thus identifying stars.

qStars that were fit with temperatures, T > 2 ⨉
107 K are continuum-dominated and hence
not recognized properly by our model.

qOur model tends to identify harder AGN with,
power-law index, " < 2 better.

qAGN with strong Fe-K line are detected more
efficiently.
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Accuracy > 90% for 
net counts > 300, & 

for background 
contribution < 5%
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