

Luca Gallo – Academic & Research Sales Engineer

National Instruments

Today, We'll Explore:

The Challenges of Making Measurements	Characteristics of Mixed-Measurement Systems				
	The National Instruments Approach				
	Architecture of a Measurement System				
Navigating the LabVIEW Environment Introduction to LabVIEW					
Break					
Fundamentals of Data Acquisition	Essential Data Acquisition Concepts				
	The Basics of Signal Conditioning				
	The Value of National Instruments Hardware Platforms				
Uniting Software and Hardware	Architecture of the NI-DAQmx Driver				
	Measurement Services and Utilities				
	Exploring and Using the NI-DAQmx API				

The Challenges of Making Measurements

Exploring the Traditional Approach to Measurements

The Origin of Automated Measurements

- Traditional pen-and-paper approach
- Redundant circuitry between instruments (e.g., displays)
- Manual data recording and analysis
- Error-prone processes
- Difficult to reproduce or redo

	Thermoelectric Voltage in mV											
	°C	0	1	2	3	4	5	6	7	8	9	10
	0	0.000	0.050	0.101	0.151	0.202	0.253	0.303	0.354	0.405	0.456	0.507
	10	0.507	0.558	0.609	0.660	0.711	0.762	0.814	0.865	0.916	0.968	1.019
	20	1.019	1.071	1.122	1.174	1.226	1.277	1.329	1.381	1.433	1.485	1.537
	30	1.537	1.589	1.641	1.693	1.745	1.797	1.849	1.902	1.954	2,006	2.059
	40	2.059	2.111	2.164	2.216	2.269	2.322	2.374	2.427	2.480	2.532	2.585
	50	2.585	2.638	2.691	2.744	2.797	2.850	2.903	2.956	3.009	3.062	3.116
ALL AL RAN MAN IN AN	50	3.116	3.169	3.222	3.275	3.329	3,382	3.436	3,489	3,543	3.596	3.650
	2	650	3.703	3.757	3.810	3.864	3.918	3.971	4.025	4.079	4.133	4.187
		-	4.240	4.294	4.348	4.402	4.456	4.510	4.564	4.618	4.672	4.726
EASTER AND THE U.S. A STORE	-		11	4.835	4.889	4.943	4.997	5.052	5.106	5,160	5.215	5.269
ni.com								N	NA INS	TIO	NAL	NTS.

Measurement Challenges Are Compounded By:

- Compressed Timelines
- Fixed Software and Hardware
- Conflicting Programming Approaches
- Inadequate Hardware Performance
- Disparate Driver APIs
- Varying Sensors and Connectivity
- Custom Signal Conditioning
- Advanced Visualization
- Changing Application Requirements
- Complex Analysis Algorithms
- Evolving Technology Trends
- Confusing Data Storage
- Differing Sampling Rates

Mixed-Measurement Applications Are Diverse

Example Application: Air Quality Measurements

• Potential Sensors Needed:

- Context
 - GPS
 - Timestamp
 - Position
 - Attitude
 - Altitude
 - Range Finder
- Environmental
 - Temperature
 - Oxygen
 - Carbon Dioxide
 - Ozone
 - Nitrogen

Sensors, Interfaces, and Signal Conditioning

Sensor	Interface	Conditioning?
GPS	RS232	No
Attitude, Altitude	RS232	No
Lidar	Ethernet	No
Temperature	Analog Voltage	Required
O ₂ , CO ₂ , O ₃ , NH ₃	Analog Voltage	Required

Software Provided With Sensors

With a System Like This, How Do You Accommodate...

- ... changes in requirements?
- ...mixed measurements in a single system?
- ...varying connectivity?
- ...signal conditioning for sensors?
- ...adding or replacing measurements or sensors?
- ...incorporating timing, triggering, or synchronization?
- ...leveraging emerging technology trends?
- ...multiple disparate software environments and APIs?

National Instruments' Strategy: Graphical System Design

Your Investment in a Platform-Based Approach to Measurements Scales Across...

Top Benefits of an Integrated Measurement Platform

Architecture of an Integrated Measurement System

Today, we'll learn about three key differentiating components of a National Instruments data acquisition system:

Architecture of an Integrated Measurement System

LabVIEW is system design software that provides engineers and scientists with the tools needed to create and deploy measurement and control systems through unprecedented hardware integration.

Exercise 1a: Measurement & Automation Explorer

Introduction to LabVIEW

System Design Software for Any Measurement Application

Unrivaled Hardware Integration in a Single Environment

- NI hardware
 - 200+ data acquisition devices
 - 450+ modular instruments
 - Cameras
 - Motion control

- Third-party hardware
 - Instrument Driver Network
 - 10,000+ instrument drivers
 - 350+ instrument vendors
 - 100+ instrument types
 - Communicate over any bus

The Foundation of LabVIEW: Virtual Instrumentation

Automation through software led to a realization about fixed-functionality instrumentation...

Redundancy: Displays

Redundancy: Power Supplies

that captures the real-world signal.

Each separate instrument requires its own power supply to run measurement circuitry

Instrument vendors provide a limitedquality display per instrument, even though monitor technology is far more advanced.

Redundancy: Memory

PCs can quickly capitalize on a performance boost from a memory upgrade from readily available RAM.

Redundancy: Storage

Each instrument duplicates onboard storage even though PC hard drives are plentiful and cost-effective.

Redundancy: Processors

Chip manufacturers rapidly enhance processors according to Moore's law, but instruments have fixed processing power.

1000 (1000 (1000 (1000 (1000 (1000

The Foundation of LabVIEW: Virtual Instrumentation

By leveraging COTS PC components, the software becomes the instrument

LabVIEW unlocks the power of instrument and data acquisition hardware by capitalizing on the PC industry and abstracting redundant circuitry.

Therefore, LabVIEW Building Blocks Are Called Virtual Instruments (*.VI)

Creating a LabVIEW Front Panel

Front Panel Objects

Decorations

Decorative elements and imagery

- Text
- Arrows
- Callouts
- Lines
- Images
- ...and more

Customizable Indicators

Used to convey outputs to a user

- Graphs and Charts
- Progress Bars
- Gauges and Meters
- LEDs
- Numerics
- Strings and Paths
- ...and more

Customizable Controls

Used to receive input from a user

- Knobs and Dials
- Sliders
- Buttons
- Numerics
- Strings and Paths
- ...and more

All Front Panel Elements Have Block Diagram Terminals

Block diagram terminals provide access to front panel values

What Is Data Flow?

- · Each block diagram node executes only when it receives all inputs
- Each node produces output data after execution
- Data flows along a path defined by wires
- · The movement of data determines execution order

Formula: Result = (A+B*C) / (D-E)

What Is Data Flow?

- Each block diagram node executes only when it receives all inputs
- Each node produces output data after execution
- · Data flows along a path defined by wires
- The movement of data determines execution order

The [Multiply] and [Subtract] operations can execute at the same time since they don't have any data dependencies.

Dataflow Languages Naturally Express Parallelism

The LabVIEW compiler will automatically multithread code expressed in parallel

Creating a LabVIEW Block Diagram

Execution Control Structures: Loops

run until a True value is evaluated.

Text Loops and Their LabVIEW Equivalents

Event and Case Structures

Text Events, Cases, and Their LabVIEW Equivalents

Exploring a LabVIEW Block Diagram

LabVIEW Functions Are as Complex as You Need

60

Understanding SubVI (Function) Behavior

- Code will only compile if required inputs are wired
- Required inputs are Bold
- If an optional input is not supplied, a default value will be used for execution

Tip: Access the Context Help using Ctrl+H

Understanding Application Hierarchy

Double-clicking a nonprimitive SubVI opens the function

Remember that each SubVI has its own front panel and block diagram.

Never Start a LabVIEW Project From Scratch

Abundant sample projects and templates provide a scalable starting point

Exploring a LabVIEW Block Diagram

The color of the wire indicates its data type, which is strictly enforced at edit-time.

The Color, Style, and Thickness of Common Wires

WireType	Scalar	1D Array	2D Array	Color
Floating Point				Orange
Integer				Blue
Boolean				Green
String		000000000000000000000000000000000000000	RAMANARARARA	Pink
Error				Yellow

A "broken wire" represents a data type conflict that LabVIEW cannot automatically resolve. Fix it, or your code won't run!

The Fundamentals of Data Acquisition (DAQ)

The Basics of Making PC-Based Measurements

Signals Come in Two Forms: Digital and Analog

Digital Signals

- Digital signals have two states: high and low
- Digital lines on a DAQ device accept and generate transistor-transistor logic (TTL) compatible signals

Digital Terminology

Analog signals are continuous signals that can be any value with respect to time.

The Three R's of Data Acquisition: Resolution

The Three R's of Data Acquisition: Range

The Three R's of Data Acquisition: Rate

Architecture of an Integrated Measurement System

NI CompactDAQ hardware combines a 1-, 4-, or 8-slot chassis with over 50 measurement-specific NI C Series I/O modules and can operate stand-alone with a built-in controller or connect to a host computer over USB, Ethernet, or 802.11 Wi-Fi.

NI CompactDAQ Is an Integrated, Modular Solution

(etc)

The NI CompactDAQ Family

Datalogger with LabVIEW

SIGNAL PROCESSING

FILE I/O

National Instruments

Corporate headquarters: Austin, Texas \$1,000 Year established: 1976 Revenue: \$1,1 bilion in 2012 \$800 Global operations: offices in 40 countries \$600 Investment in R&D: 16% of annual revenue Customer base: 30,000 companies annually \$400 **Network:** More than 600 Alliance Partners \$200 Diversity: no industry makes up more than 15% of revenue

Revenue in Millions USE

More than 30,000 companies

...including 90% of Fortune 500 manufacturing companies

NI Is the Global Leader in Data Acquisition

With more than 20 years of DAQ hardware history and millions of channels sold

NI Data Acquisition Hardware Families

ni.com

NI Italy Services

Thank you very much!!

QUESTIONS??

