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Part 1

• What is Machine Learning?

• How does it work?

• Brief introduction to Artificial 

Neuronal Networks.

Part 2
• The Cannon

• The Payne

• Issues of using ML for stellar 

spectroscopy and possible solutions
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Study the 
problem

Machine 
Learning

Inspect the 
solution

Make 
predictions!

Iterate if needed
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''Field of study that gives computers 
the ability to learn without being 
explicitly programmed'' Arthur Samuel,


Teaching a computer to play checkers, 
1959@lorenzospina
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Stellar spectroscopy
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Supervised Machine Learning  - Regression Algorithms

�6@lorenzospina



Supervised Machine Learning  - Regression Algorithms

�6@lorenzospina



Supervised Machine Learning  - Regression Algorithms

�6@lorenzospina



Data

Supervised Machine Learning  - Regression Algorithms

@lorenzospina �7



Data with 
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Supervised Machine Learning  - Regression Algorithms

@lorenzospina �7



Data with 
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Machine learning algorithm

Training sample

Supervised Machine Learning  - Regression Algorithms

@lorenzospina �7



Data with 
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Model 
P(length|tie)

Machine learning algorithm

Training sample

Supervised Machine Learning  - Regression Algorithms

@lorenzospina �7



Data with 
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Model 
P(length|tie)

Evaluation 
Loss function: 


(predictions - truth)

Machine learning algorithm

Training sample

Test sample

Supervised Machine Learning  - Regression Algorithms

@lorenzospina �7



Data with 
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Model 
P(length|tie)

Evaluation 
Loss function: 


(predictions - truth)

Machine learning algorithm

Training sample

Test sample

Final 
model

Supervised Machine Learning  - Regression Algorithms

@lorenzospina �7



Data with 
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Model 
P(length|tie)

Evaluation 
Loss function: 


(predictions - truth)

Machine learning algorithm

Training sample

Test sample

Final 
model

Input: tie image
Output: 

tie length

87 cm

Supervised Machine Learning  - Regression Algorithms

@lorenzospina �7



Data

Data with 
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

It is a "generalization problem".

The algorithm learns concepts from the 
training sample and then applies these 
rules to the rest of our dataset.

The training/test sets need to be 
representative of the full picture.

The test set gives you a generalisation 
error (i.e., how well the model is able to 
generalize).

Supervised Machine Learning  - Regression Algorithms
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Sometimes the model performs well on the training data, but doesn't generalise well (fails on new data).

A very simple model is more prone to underfitting.

A model with more free parameters is more prone to overfitting: they can detect subtle patterns in data, 
but it is likely to detect pattersn in the noise.

A good model is the one that finds a balance between underfitting and overfitting.

Several types of algorithms (linear/logistic regression, decision tree algorithms, support vector machines, k-
means, artifical neuronal networks, etc...). Each of them is recommended for a different type of problem and 
dataset. Each of them has its own set of parameters that can be tuned in order to find the best model.

Hereafter we will focus on Artificial Neuronal Networks (ANN), which can tacke highly complex ML tasks.

Finding the best model
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Biological Neurons

Signals (light, sound, etc) are transmitted along the nervous system (i.e. billions of neurons). 
Typically organized in layers.

@lorenzospina

Multiple layers in a biological neural network (human cortex)
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Biological Neurons

input a

input b

input c

Sum inputs

x = a + b + c

Activation 
function


y(x)
y

x

output y(x)
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Artificial Neuronal Networks

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3
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Artificial Neuronal Networks

We can train an ANN to perform a task by adjusting the strenght of each connection with 
weights.

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3

w1,1
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w1,3

w2,1

w2,2
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w1,2

w1,2

w2,2

w2,2

w2,2

w1,3

w1,3

w1,3

w2,3

w2,3

w2,3

The connection weights are trainable parameters and can be adjusted until we are not 
satisfied with the performance.
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Derivate of the cost function =
∂J(w)
∂wj

=
1
n

n

∑
i=1

[yi − ̂yi]wj

Now you can correct the weights to minimize the cost 
function.

However, several iterations with small corrections are 
needed to reach the minimum of J(w).
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Sometimes training samples are composed by thousands of elements. It is highly inefficient to pass the 
training sample through the ANN all in once.
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Problem.
Sometimes training samples are composed by thousands of elements. It is highly inefficient to pass the 
training sample through the ANN all in once.

Soution.
The training sample is divided in subsamples of N elements. When each subsamble has passed through the 
ANN, the weights are corrected. The epoch ends when all the elements of the training sample have passed 
through the ANN. The size of each subsample is called "batch size".
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Books

Artificial Neuronal Networks in your browser
https://cs.stanford.edu/people/karpathy/convnetjs/

https://teachablemachine.withgoogle.com/

https://playground.tensorflow.org/
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