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"Field of study that gives computers
the ability to learn without being
explicitly programmed"

Arthur Samuel,

Teaching a computer to play checkers,
1959 3
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CLASSICAL MACHINE LEARNING

Data is pre-categorized
or numerical

SUPERVISED

Predict Predict
a Caxegory o number
CLASSIFICATION
«Divide the socks by color»

REGRESSION

«Divide the ties by length»
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Supervised Machine Learning - Regression Algorithms
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Regression Algorithms

Supervised Machine Learning
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Supervised Machine Learning

Data with
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Supervised Machine Learning - Regression Algorithms

Data with
known labels
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It is a "generalization problem”.

The algorithm learns concepts from the
training sample and then applies these
rules to the rest of our dataset.

The test set gives you a generalisation
error (i.e., how well the model is able to

generalize).

The training/test sets need to be
representative of the full picture.
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Finding the best model

Several types of algorithms (linear/logistic regression, decision tree algorithms, support vector machines, k-
means, artifical neuronal networks, etc...). Each of them is recommended for a different type of problem and
dataset. Each of them has its own set of parameters that can be tuned in order to find the best model.

Polynomial fit degree 1 Polynomial fit degree 4 Polynomial fit degree 20
Training error: 0.4 Training error: 0.14 Training error: 0.07
Generalization error: 0.42 Generalization error: 0.17 Generalization error: 2000

2004

Underfit Good fit Overfit

Sometimes the model performs well on the training data, but doesn't generalise well (fails on new data).

A very simple model is more prone to underfitting.

A model with more free parameters is more prone to overfitting: they can detect subtle patterns in data,
but it is likely to detect pattersn in the noise.

A good model is the one that finds a balance between underfitting and overfitting.

Hereafter we will focus on Artificial Neuronal Networks (ANN), which can tacke highly complex ML tasks.
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Biological Neurons
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Multiple layers in a biological neural network (human cortex)

Signals (light, sound, etc) are transmitted along the nervous system (i.e. billions of neurons).
Typically organized in layers.
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Artificial Neuronal Networks
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Artificial Neuronal Networks

layer 1 layer 2 layer 3

W2, 1

inputs >

» outputs

W12 W22

W1,3 W23

W13 W23

W13 W23

We can train an ANN to perform a task by adjusting the strenght of each connection with
weights.

The connection weights are trainable parameters and can be adjusted until we are not
satisfied with the performance.
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Artificial Neuronal Networks
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Artificial Neuronal Networks
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Artificial Neuronal Networks
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Now you can correct the weights to minimize the cost

aJw) 1« . . .
Derivate of the cost function = =— Z [y — V' ]w; function. o . |
ow- n J However, several iterations with small corrections are

J i=1 needed to reach the minimum of J(w).
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Repeat for every element of Calculate the cost function
the training sample and its derivative
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Big Learning Rate Small Learning Rate

; edureka!
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Problem.

Sometimes training samples are composed by thousands of elements. It is highly inefficient to pass the
training sample through the ANN all in once.
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Repeat for every element of Calculate the cost function
the training sample and its derivative

Correct the weights
aJ(w)

Correction = X learning rate

Problem.

Sometimes training samples are composed by thousands of elements. It is highly inefficient to pass the
training sample through the ANN all in once.

Soution.

The training sample is divided in subsamples of N elements. When each subsamble has passed through the
ANN, the weights are corrected. The epoch ends when all the elements of the training sample have passed
through the ANN. The size of each subsample is called "batch size".

@lorenzospina 15



Artificial Neuronal Networks

@lorenzospina

16



Artificial Neuronal Networks

@lorenzospina

16



Artificial Neuronal Networks

Training sample

@lorenzospina

16



Artificial Neuronal Networks

Training sample

@lorenzospina

Cost function training sample

16



Artificial Neuronal Networks

Training sample
[Test sample]

@lorenzospina

Cost function training sample

16



Artificial Neuronal Networks

Training sample
[Test sample]

@lorenzospina

Cost function training sample
[Cost function test sampile]

16



Artificial Neuronal Networks

Training sample
[Test sample]

@lorenzospina

Cost function training sample
[Cost function test sampile]
Weights correction

16



Artificial Neuronal Networks

Epoch 1
Training sample
[Test sample]

@lorenzospina

Cost function training sample
[Cost function test sampile]
Weights correction

16



Artificial Neuronal Networks

Epoch 1

Training sample
[Test sample]

Epoch 2

@lorenzospina

Training sample
[Test sample]

Cost function training sample
[Cost function test sampile]
Weights correction

Cost function training sample
[Cost function test sampile]
Weights correction

16



Artificial Neuronal Networks

Epoch 1
Training sample
[Test sample]

Epoch 2
Training sample
[Test sample]

Epoch 3
Training sample
[Test sample]

@lorenzospina

Cost function training sample
[Cost function test sampile]
Weights correction

Cost function training sample
[Cost function test sampile]
Weights correction

Cost function training sample
[Cost function test sample]

Weights correction

16



Artificial Neuronal Networks

Epoch 1
Training sample
[Test sample]

Epoch 2
Training sample
[Test sample]

Epoch 3
Training sample
[Test sample]

Epoch 4
Training sample
[Test sample]

@lorenzospina

Cost function training sample
[Cost function test sampile]
Weights correction

Cost function training sample
[Cost function test sampile]
Weights correction

Cost function training sample
[Cost function test sample]

Weights correction

Cost function training sample
[Cost function test sample]
Weights correction

16



Artificial Neuronal Networks

Epoch 1
Training sample
[Test sample]

Epoch 2
Training sample
[Test sample]

Epoch 3
Training sample
[Test sample]

Epoch 4
Training sample
[Test sample]

Cost function training sample
[Cost function test sampile]
Weights correction

Cost function training sample
[Cost function test sampile]
Weights correction

Cost function training sample
[Cost function test sample]

Weights correction

Cost function training sample
[Cost function test sample]
Weights correction

10°

Cost

10* 1

‘.' LV ‘ Y ,\ e L LA

-.\»"f--n,f....v‘..‘u,\‘_l L
v '*J‘ﬁ"”} f“s"Jr\t\',,uq'f(\W‘t'le(:ﬁ\,ﬁ.«‘)'-,p\ f

—— Training set
Test set

. Iy |
arddp NS o .) IR A BT YA ¥
‘ y AR

i
L X "\\‘ ‘*1 f “'v‘\’_u ! J ! w,\.}., e |.,',_'|"(,"lelwml}.v‘*-‘Mllwv.r‘(ﬁ'q-\ﬂ"*w"1.\“}1\&‘.‘

@lorenzospina

40000 EpOChS 60000 80000 100000

16



Books 4
O'REILLY 3 %,
Hands-on
Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

Early

Release

RAW &
UNEDITED

Aurélien Géron

Python Machine Learning

Unlock deeper insights into machine learning with this vital guide
to cutting-edge predictive analytics

Foreword by Dr. Randal S. Olson
Artificial Intelligence and Machine Learning Researcher, University of Pennsylvania

PACKT *

Artificial Neuronal Networks in your browser

https://cs.stanford.edu/people/karpathy/convnetjs/

https://teachablemachine.withgoogle.com/

https://playground.tensorflow.org/

@lorenzospina

17



