
Machine Learning techniques

for Stellar Spectroscopy
Part 1

Lorenzo Spina
INAF - Astronomical Observatory of
Padua (Italy)

spina.astro@gmail.com

@lorenzospina

©

Part 1

• What is Machine Learning?

• How does it work?

• Brief introduction to Artificial

Neuronal Networks.

Part 2
• The Cannon

• The Payne

• Issues of using ML for stellar

spectroscopy and possible solutions

�2@lorenzospina

�2

Pr(|)

@lorenzospina

�2

Pr(|)

@lorenzospina

�2

Pr(|)

@lorenzospina

�2

Pr(|)

@lorenzospina

�2

Study the
problem

Write the
model

Analyze
errors

Evaluate Make
predictions!

Pr(|)

@lorenzospina

�2

Study the
problem

Write the
model

Analyze
errors

Evaluate Make
predictions!

Pr(|)

@lorenzospina

�2

Study the
problem

Write the
model

Analyze
errors

Evaluate Make
predictions!

Pr(|)

Study the
problem

Machine
Learning

Inspect the
solution

Make
predictions!

Iterate if needed
@lorenzospina

�3

''Field of study that gives computers
the ability to learn without being
explicitly programmed'' Arthur Samuel,

Teaching a computer to play checkers,
1959@lorenzospina

�4@lorenzospina

�4@lorenzospina

Stellar spectroscopy

�5@lorenzospina

�5@lorenzospina

�5@lorenzospina

Supervised Machine Learning - Regression Algorithms

�6@lorenzospina

Supervised Machine Learning - Regression Algorithms

�6@lorenzospina

Supervised Machine Learning - Regression Algorithms

�6@lorenzospina

Data

Supervised Machine Learning - Regression Algorithms

@lorenzospina �7

Data with
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Supervised Machine Learning - Regression Algorithms

@lorenzospina �7

Data with
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Machine learning algorithm

Training sample

Supervised Machine Learning - Regression Algorithms

@lorenzospina �7

Data with
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Model
P(length|tie)

Machine learning algorithm

Training sample

Supervised Machine Learning - Regression Algorithms

@lorenzospina �7

Data with
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Model
P(length|tie)

Evaluation
Loss function:

(predictions - truth)

Machine learning algorithm

Training sample

Test sample

Supervised Machine Learning - Regression Algorithms

@lorenzospina �7

Data with
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Model
P(length|tie)

Evaluation
Loss function:

(predictions - truth)

Machine learning algorithm

Training sample

Test sample

Final
model

Supervised Machine Learning - Regression Algorithms

@lorenzospina �7

Data with
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

Data

Model
P(length|tie)

Evaluation
Loss function:

(predictions - truth)

Machine learning algorithm

Training sample

Test sample

Final
model

Input: tie image
Output:

tie length

87 cm

Supervised Machine Learning - Regression Algorithms

@lorenzospina �7

Data

Data with
known labels

90 cm

88 cm

92 cm

85 cm

95 cm

98 cm

81 cm

94 cm

87 cm

It is a "generalization problem".

The algorithm learns concepts from the
training sample and then applies these
rules to the rest of our dataset.

The training/test sets need to be
representative of the full picture.

The test set gives you a generalisation
error (i.e., how well the model is able to
generalize).

Supervised Machine Learning - Regression Algorithms

@lorenzospina �8

�9

Sometimes the model performs well on the training data, but doesn't generalise well (fails on new data).

A very simple model is more prone to underfitting.

A model with more free parameters is more prone to overfitting: they can detect subtle patterns in data,
but it is likely to detect pattersn in the noise.

A good model is the one that finds a balance between underfitting and overfitting.

Several types of algorithms (linear/logistic regression, decision tree algorithms, support vector machines, k-
means, artifical neuronal networks, etc...). Each of them is recommended for a different type of problem and
dataset. Each of them has its own set of parameters that can be tuned in order to find the best model.

Hereafter we will focus on Artificial Neuronal Networks (ANN), which can tacke highly complex ML tasks.

Finding the best model

@lorenzospina

�9

Sometimes the model performs well on the training data, but doesn't generalise well (fails on new data).

A very simple model is more prone to underfitting.

A model with more free parameters is more prone to overfitting: they can detect subtle patterns in data,
but it is likely to detect pattersn in the noise.

A good model is the one that finds a balance between underfitting and overfitting.

Several types of algorithms (linear/logistic regression, decision tree algorithms, support vector machines, k-
means, artifical neuronal networks, etc...). Each of them is recommended for a different type of problem and
dataset. Each of them has its own set of parameters that can be tuned in order to find the best model.

Hereafter we will focus on Artificial Neuronal Networks (ANN), which can tacke highly complex ML tasks.

Finding the best model

@lorenzospina

�9

Sometimes the model performs well on the training data, but doesn't generalise well (fails on new data).

A very simple model is more prone to underfitting.

A model with more free parameters is more prone to overfitting: they can detect subtle patterns in data,
but it is likely to detect pattersn in the noise.

A good model is the one that finds a balance between underfitting and overfitting.

Several types of algorithms (linear/logistic regression, decision tree algorithms, support vector machines, k-
means, artifical neuronal networks, etc...). Each of them is recommended for a different type of problem and
dataset. Each of them has its own set of parameters that can be tuned in order to find the best model.

Hereafter we will focus on Artificial Neuronal Networks (ANN), which can tacke highly complex ML tasks.

Finding the best model

@lorenzospina

�9

Sometimes the model performs well on the training data, but doesn't generalise well (fails on new data).

A very simple model is more prone to underfitting.

A model with more free parameters is more prone to overfitting: they can detect subtle patterns in data,
but it is likely to detect pattersn in the noise.

A good model is the one that finds a balance between underfitting and overfitting.

Several types of algorithms (linear/logistic regression, decision tree algorithms, support vector machines, k-
means, artifical neuronal networks, etc...). Each of them is recommended for a different type of problem and
dataset. Each of them has its own set of parameters that can be tuned in order to find the best model.

Hereafter we will focus on Artificial Neuronal Networks (ANN), which can tacke highly complex ML tasks.

Finding the best model

@lorenzospina

�10

Biological Neurons

Signals (light, sound, etc) are transmitted along the nervous system (i.e. billions of neurons).
Typically organized in layers.

@lorenzospina

Multiple layers in a biological neural network (human cortex)

�11

Biological Neurons

input a

input b

input c

Sum inputs

x = a + b + c

Activation
function

y(x)
y

x

output y(x)

@lorenzospina

�12

Artificial Neuronal Networks

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3

@lorenzospina

�12

Artificial Neuronal Networks

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3

@lorenzospina

Stellar labels
(Teff, log g, [Fe/H], [X/Fe])

�12

Artificial Neuronal Networks

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3

@lorenzospina

Stellar labels
(Teff, log g, [Fe/H], [X/Fe])

�13

Artificial Neuronal Networks

We can train an ANN to perform a task by adjusting the strenght of each connection with
weights.

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

w1,2

w1,2

w1,2

w2,2

w2,2

w2,2

w1,3

w1,3

w1,3

w2,3

w2,3

w2,3

The connection weights are trainable parameters and can be adjusted until we are not
satisfied with the performance.

@lorenzospina

�14

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

w1,2

w1,2

w1,2

w2,2

w2,2

w2,2

w1,3

w1,3

w1,3

w2,3

w2,3

w2,3

@lorenzospina

Artificial Neuronal Networks

Stellar labels
(Teff, log g, [Fe/H], [X/Fe])

�14

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

w1,2

w1,2

w1,2

w2,2

w2,2

w2,2

w1,3

w1,3

w1,3

w2,3

w2,3

w2,3

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

@lorenzospina

Artificial Neuronal Networks

Stellar labels
(Teff, log g, [Fe/H], [X/Fe])

�14

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

w1,2

w1,2

w1,2

w2,2

w2,2

w2,2

w1,3

w1,3

w1,3

w2,3

w2,3

w2,3

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

Cost function = J(w) =
1
2n

n

∑
i=1

[yi − ̂yi]2

Weights
Number of sample data

@lorenzospina

Artificial Neuronal Networks

Stellar labels
(Teff, log g, [Fe/H], [X/Fe])

�14

inputs outputs

layer 1 layer 2 layer 3

1 1 1

2 2 2

3 3 3

w1,1

w1,2

w1,3

w2,1

w2,2

w2,3

w1,2

w1,2

w1,2

w2,2

w2,2

w2,2

w1,3

w1,3

w1,3

w2,3

w2,3

w2,3

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

Cost function = J(w) =
1
2n

n

∑
i=1

[yi − ̂yi]2

Weights
Number of sample data

Derivate of the cost function =
∂J(w)
∂wj

=
1
n

n

∑
i=1

[yi − ̂yi]wj

Now you can correct the weights to minimize the cost
function.

However, several iterations with small corrections are
needed to reach the minimum of J(w).

@lorenzospina

Artificial Neuronal Networks

Stellar labels
(Teff, log g, [Fe/H], [X/Fe])

�15@lorenzospina

Artificial Neuronal Networks

�15@lorenzospina

Artificial Neuronal Networks
St

el
la

r l
ab

el
s

(T
eff

, l
og

 g
, [

Fe
/H

],
[X

/F
e]

)

Output: predicted spectrum

�15@lorenzospina

Artificial Neuronal Networks
St

el
la

r l
ab

el
s

(T
eff

, l
og

 g
, [

Fe
/H

],
[X

/F
e]

)

Output: predicted spectrum

I compare the predicted spectrum
with the observed spectrum

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

�15@lorenzospina

Artificial Neuronal Networks
St

el
la

r l
ab

el
s

(T
eff

, l
og

 g
, [

Fe
/H

],
[X

/F
e]

)

Output: predicted spectrum

I compare the predicted spectrum
with the observed spectrum

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

Calculate the cost function
and its derivative

Repeat for every element of
the training sample

�15@lorenzospina

Artificial Neuronal Networks
St

el
la

r l
ab

el
s

(T
eff

, l
og

 g
, [

Fe
/H

],
[X

/F
e]

)

Output: predicted spectrum

I compare the predicted spectrum
with the observed spectrum

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

Calculate the cost function
and its derivative

Repeat for every element of
the training sample

Correct the weights
Correction =

∂J(w)
∂wj

× learning rate

�15@lorenzospina

Artificial Neuronal Networks
St

el
la

r l
ab

el
s

(T
eff

, l
og

 g
, [

Fe
/H

],
[X

/F
e]

)

Output: predicted spectrum

I compare the predicted spectrum
with the observed spectrum

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

Calculate the cost function
and its derivative

Repeat for every element of
the training sample

Correct the weights
Correction =

∂J(w)
∂wj

× learning rate

�15@lorenzospina

Artificial Neuronal Networks
St

el
la

r l
ab

el
s

(T
eff

, l
og

 g
, [

Fe
/H

],
[X

/F
e]

)

Output: predicted spectrum

I compare the predicted spectrum
with the observed spectrum

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

Calculate the cost function
and its derivative

Repeat for every element of
the training sample

Correct the weights
Correction =

∂J(w)
∂wj

× learning rate

�15@lorenzospina

Artificial Neuronal Networks
St

el
la

r l
ab

el
s

(T
eff

, l
og

 g
, [

Fe
/H

],
[X

/F
e]

)

Output: predicted spectrum

I compare the predicted spectrum
with the observed spectrum

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

Calculate the cost function
and its derivative

Repeat for every element of
the training sample

Correct the weights
Correction =

∂J(w)
∂wj

× learning rate

�15@lorenzospina

Artificial Neuronal Networks
St

el
la

r l
ab

el
s

(T
eff

, l
og

 g
, [

Fe
/H

],
[X

/F
e]

)

Output: predicted spectrum

I compare the predicted spectrum
with the observed spectrum

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

Calculate the cost function
and its derivative

Repeat for every element of
the training sample

Correct the weights
Correction =

∂J(w)
∂wj

× learning rate

Problem.
Sometimes training samples are composed by thousands of elements. It is highly inefficient to pass the
training sample through the ANN all in once.

�15@lorenzospina

Artificial Neuronal Networks
St

el
la

r l
ab

el
s

(T
eff

, l
og

 g
, [

Fe
/H

],
[X

/F
e]

)

Output: predicted spectrum

I compare the predicted spectrum
with the observed spectrum

Loss function =
1
2

[yi − ̂yi]2

Vector of the final outputs (predictions)
Vector of true values

Calculate the cost function
and its derivative

Repeat for every element of
the training sample

Correct the weights
Correction =

∂J(w)
∂wj

× learning rate

Problem.
Sometimes training samples are composed by thousands of elements. It is highly inefficient to pass the
training sample through the ANN all in once.

Soution.
The training sample is divided in subsamples of N elements. When each subsamble has passed through the
ANN, the weights are corrected. The epoch ends when all the elements of the training sample have passed
through the ANN. The size of each subsample is called "batch size".

�16@lorenzospina

Artificial Neuronal Networks

�16@lorenzospina

Artificial Neuronal Networks

�16@lorenzospina

Artificial Neuronal Networks

Training sample

�16@lorenzospina

Artificial Neuronal Networks

Training sample Cost function training sample

�16@lorenzospina

Artificial Neuronal Networks

Training sample Cost function training sample
[Test sample]

�16@lorenzospina

Artificial Neuronal Networks

Training sample Cost function training sample
[Test sample] [Cost function test sample]

�16@lorenzospina

Artificial Neuronal Networks

Training sample Cost function training sample
[Test sample] [Cost function test sample]

Weights correction

�16@lorenzospina

Artificial Neuronal Networks

Training sample Cost function training sample
[Test sample] [Cost function test sample]

Weights correction

Epoch 1

�16@lorenzospina

Artificial Neuronal Networks

Training sample Cost function training sample
[Test sample] [Cost function test sample]

Weights correction

Epoch 1

Training sample
[Test sample]

Epoch 2 Cost function training sample
[Cost function test sample]
Weights correction

�16@lorenzospina

Artificial Neuronal Networks

Training sample Cost function training sample
[Test sample] [Cost function test sample]

Weights correction

Epoch 1

Training sample
[Test sample]

Epoch 2 Cost function training sample
[Cost function test sample]
Weights correction

Training sample
[Test sample]

Epoch 3 Cost function training sample
[Cost function test sample]
Weights correction

�16@lorenzospina

Artificial Neuronal Networks

Training sample Cost function training sample
[Test sample] [Cost function test sample]

Weights correction

Epoch 1

Training sample
[Test sample]

Epoch 2 Cost function training sample
[Cost function test sample]
Weights correction

Training sample
[Test sample]

Epoch 3 Cost function training sample
[Cost function test sample]
Weights correction

Training sample
[Test sample]

Epoch 4 Cost function training sample
[Cost function test sample]
Weights correction

�16@lorenzospina

Artificial Neuronal Networks

Training sample Cost function training sample
[Test sample] [Cost function test sample]

Weights correction

Epoch 1

Training sample
[Test sample]

Epoch 2 Cost function training sample
[Cost function test sample]
Weights correction

Training sample
[Test sample]

Epoch 3 Cost function training sample
[Cost function test sample]
Weights correction

Training sample
[Test sample]

Epoch 4 Cost function training sample
[Cost function test sample]
Weights correction

Epochs

C
os

t

Training set
Test set

�17

Books

Artificial Neuronal Networks in your browser
https://cs.stanford.edu/people/karpathy/convnetjs/

https://teachablemachine.withgoogle.com/

https://playground.tensorflow.org/

@lorenzospina

