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• How does it work?
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• The Cannon
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• Issues of using ML for stellar 

spectroscopy and possible solutions
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ML algorithm
(magics happen)

Stellar labels 
(Teff, log g, [Fe/H], [X/Fe])

In our dreams...
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The Cannon
A pure data-driven approach to Spectroscopic Analysis.

fnλ = g(ln |θλ) + noiseFlux at every pixel 
for the nth-star

Stellar parameters and 
abundances of the nth-star.


(known labels)

Coefficients. 
One per pixel.  
(unknown, 
trainable)

The coefficients and the noise can be 
"learnt" from a training set of spectra 
whose stellar parameters are already know.

Once the model is ready, you can apply 
it to other stars with unknown labels.

Ness et al. (2015)
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The Cannon relies on the following to be true:

• stellar flux varies smoothly with stellar labels 

• stars with the same labels have the same spectra
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Authors suggest to use a 
second-order 
polynomium (quadratic-
in-label case).

The g function is a polynomium, whose order is set by the user.

First-order 
polynomium. The 
most simple model.
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The Cannon
A pure data-driven approach to Spectroscopic Analysis.

Ness et al. (2015)

Ness et al. (2015)

Oh et al. (2017)
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Ness (2018)

The method is extremely 
symple and fast.

Advantage

The method uses no physical 
stellar models.

Danger
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The danger of using data-
driven models. 

We need to be extra cautious of 
what the ML algorithms are 
"learning" and what training sets 
we build. 

Beware of hidden bias and correlations!
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The pitfalls of a data-driven approach
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The pitfalls of a data-driven approach

The effect of biases in the training set...

Training set (only giants) Test set (giants + dwarfs)
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Take-home messages:

The training set must be representative of the specific problem we want to address.

Any bias that exists in the training set will be folded into the test set.

Leug & Bovy (2018) 
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Spectrum

log g [Fe/H] [Mg/Fe]

The effect of correlations in the training set.

Is the model 
"learning" 
measurements?

...or is it "learning" 
hidden correlations?
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We need to be extra cautious of 
what the ML algorithms are 
"learning" and what training sets 
we build. 

Beware of hidden bias and correlations!
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The pitfalls of a data-driven approach

Unfortunately bias and 
correlations are unavoidable in 
stellar spectroscopy...
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The Payne
Physical generalization: the training sample is composed by synthetic spectra.

Stellar la
bels 

(Teff
, lo

g g, [F
e/H

], [
X/Fe])

...

... ...
...

Input 
Layer

Output 
LayerHidden Layers

Synthetic
 sp

ect
ra
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Ting et al. (2019)
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... ...
...

Input 
Layer

Output 
LayerHidden Layers

Synthetic
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ect
ra

Full control on the training sample

You can sample the entire space of parameters.

Observed spectrumFitting

χ2 minimization

Stellar 
parameters

Thanks to this fast interpolator of atmospheric models you 
can simply fit your spectra in order to calculate the 
atmospheric parameters.
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Ting et al. (2019)
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The Payne
Physical generalization: the training sample is composed by synthetic spectra.

Ting et al. (2019)

Analysis of the APOGEE 
DR14 dataset with The Payne 
(Ting et al 2019).
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Models are good approximations of reality, but they are not perfect.

Synthetic gap: differences in feature distributions between synthetic and observed spectra.

The pitfall of physical generalisation: the synthetic gap

Tips to reduce the synthetic gap:

• pre-processing the spectra: matching the resolution and sampling of the spectra to a common wavelength 

scale and removing the continuum.

• argumenting the spectra data set: adding Gaussian noise, rotational and radial velocities, masking telluric 

regions, and zeroing flux values to mimic bad pixels
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Pro. Better causual inference.

Cons. Models suffer from 
systematics and neglect part of 
physics.

Pro. Real data are a better 
representation of the real world.

Cons. Surveys always suffer of 

selection functions and hiddden biases

Physical 
generalization Data-driven

The Payne The Cannon

The two approaches with machine learning

@lorenzospina !15



Pro. Better causual inference.

Cons. Models suffer from 
systematics and neglect part of 
physics.

Pro. Real data are a better 
representation of the real world.

Cons. Surveys always suffer of 

selection functions and hiddden biases

Physical 
generalization Data-driven

The Payne The Cannon

Swee
t s

pot?

The two approaches with machine learning

@lorenzospina !15



Feature transfer
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Cycle-Starnet O'Briain et al. (2021)

@lorenzospina !17



Cycle-Starnet O'Briain et al. (2021)

@lorenzospina

O'Briain et al. (2021)

!18



Cycle-Starnet
Limitations:

• It is not always straightforward to make the algorithm converge during training.

• It relies on the assumption that the uncertainties in the observed spectra are 

perfectly known. How a mis-characterisation of the noise affect the final results is yet 
to be studied.


• Labels from the synthetic and observad domains must span the same range. 
However, for a new survey we may not know the range of stellar labels.


• Cycle-Starnet may not extrapolate well for outliers and exotic stellar objects.

• Cycle-Starnet can correct for inaccurate atomic parameters in the linelist. However, 

this adds much more complexity in the analysis.

• It is impossible to correct for all the possible unknowns. The synthetic gap is reduced 

but not completely eliminated.

@lorenzospina

However, the study of Tranfer Features algorithms is currently proceeding at high 
speed. It is very likely that in the next few years we will have better algorithms that 
could alleviate all these limitations.
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Conclusions
• Machine learning algorithms are a powerful tool.  

Significant computational power, huge amount of data, new algorithms: we can embrace new 
methods in our research, passing from a model-drive approach to a data-driven approach.

@lorenzospina

• Machine learning algorithms applied to stellar spectroscopy have some pitfalls and limitations.  
Data-driven models: bias and correlations. 
Physical generalisation models: synthetic gap. 
These are unavoidable pitfalls. However there are codes that achieve reasonably good results.

• There is a huge effort in researching new machine learning algorithms. The "state-of-the-art" is 
fluid and can evolve very rapidly. Stay tuned!

Ting et al. (2019) Buder et al. (2018)
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...also see Nandakumar et al. (2020) for a nice example of data homogeneisation (GALAH-APOGEE) with the Cannon.


