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Machine Learning: why should we care?
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Moore’s Law: The number of transistors on microchips doubles every two years [SURUWHE
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing — such as processing speed or the price of computers.
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In our dreams...

Stellar labels
(Tesr, log g, [Fe/H], [X/Fel))

ML algorithm

(magics happen)
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Computer vision VS stellar spectroscopy
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Computer vision VS stellar spectroscopy

a translaed cat:
the same cat
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Computer vision VS stellar spectroscopy
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Computer vision VS stellar spectroscopy

a translafed cat: a translated spectrum:
the same cat not the same spectrum!

a distorted spectrum:

a distorted cat: not the same spectrum!
the same cat
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https://annayqho.github.io/TheCannon/
The Cannon nNess et al. (2015)

A pure data-driven approach to Spectroscopic Analysis.

Flux at every pixel f;le — g(ln ‘ 9/1) + noise

for the nth-star
Coefficients.

One per pixel.
(unknown,
trainable)

Stellar parameters and
abundances of the nth-star.
(known labels)

The coefficients and the noise can be Once the model is ready, you can apply
"learnt" from a training set of spectra it to other stars with unknown labels.

whose stellar parameters are already know.

The Cannon relies on the following to be true:
- stellar flux varies smoothly with stellar labels
- stars with the same labels have the same spectra

@lorenzospina 5



https://annayqho.github.io/TheCannon/
The Cannon nNess et al. (2015)

A pure data-driven approach to Spectroscopic Analysis.

Flux at every pixel _ .
for the nthE/sE[)ar fn/l T g(ln ‘ H,‘t) + noise
Coefficients.
One per pixel.
(unknown,
trainable)

Stellar parameters and
abundances of the nth-star.

(known labels)

The g function is a polynomium, whose order is set by the user.

First-order fax = ax + ba(Teff), + cx(logg), + da([Fe/H])n + noise

polynomium. The )

most simple model. 0, - (aA’ Ak’ € ‘{A)
F,\ =6 (constant term)

+ 07 Tog + - -+ + Ox, [ Xn/Fe] (linear terms)
Authors suggest to use a

second-order + HTgffoff +- 9X12V ([Xn/Fe])? (squared terms)
polynomium (quadratic-

. + eTeff log(g)Teff log(g) + e
in-label case).

+0xyxn_ 1 [ XN/Fel[Xn_1/Fe] (cross-terms)

+ error
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The Cannon nNess et al. (2015)

A pure data-driven approach to Spectroscopic Analysis.
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The Cannon nNess et al. (2015)

A pure data-driven approach to Spectroscopic Analysis.

https://annayqho.github.io/TheCannon/
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https://annaygho.github.io/TheCannon/
The Cannon nNessetal. (2015)

A pure data-driven approach to Spectroscopic Analysis.
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https://annaygho.github.io/TheCannon/
The Cannon nNessetal. (2015)

A pure data-driven approach to Spectroscopic Analysis.
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https://annayqho.github.io/TheCannon/
The Cannon nNess et al. (2015)

A pure data-driven approach to Spectroscopic Analysis.

. £ 030 [Fe/H] (dex)
+0.0 &)
@ — ASPCAP
0.5 o,
— " » 0.25p —— The Cannon
% 0.0 the
S 1 2 0.20}
5 -0.5 > L2
> _ .
o ? —10% '8 0.15}
= =
8L -1.5 R .
£ el 0 S 0.05} 5
= -2.5 0 :
5 —_— z 000 | 1 ; 1+1 1
5500 5000 4500 4000 3500 —3.0 o 20 40 60 80 100 120
The Cannon Teff, [K] S N e
of Visit Spectra
Ness et al. (2015) Ness (2018) / P
0.5 - - - . - -
0.4| (Objects with SNR >20] ﬂ Advantage

The method is extremely
symple and fast.

0.3

Danger
The method uses no physical

stellar models.

[O/Il\” (dex) from Cannon/LAMOST
o =

-0.2

20  —15  —10 _ —05 0.0 0.5
[Fe/H] (dex) from Cannon/LAMOST Oh e-t al (201 7)

@lorenzospina 7



The pitfalls of a data-driven approach
Beware of hidden bias and correlations!
The danger of using data-
CAUTION et
We need to be extra cautious of

what the ML algorithms are

TRI P PI N G ;\I/eeal;:ii?cglg. " and what training sets
HAZARD

WATCH
YOUR STEP

REY | oo
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The pitfalls of a data-driven approach

The effect of biases in the training set...

Training set (only giants) Test set (giants + dwarfs)
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Leug & Bovy (2018)
Take-home messages:

The training set must be representative of the specific problem we want to address.
Any bias that exists in the training set will be folded into the test set.
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The pitfalls of a data-driven approach

The effect of correlations in the training set.

s the model
"learning”
measurements?

...oris it "learning”
hidden correlations?
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The pitfalls of a data-driven approach

The effect of correlations in the training set.

Is the model Selection Function
"learning”

measurements”? :

...oris it "learning”
hidden correlations?
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The pitfalls of a data-driven approach

The effect of correlations in the training set.

s the model
"learning”
measurements?

...oris it "learning”
hidden correlations?
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Selection Function

*

Chemical evolution
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The pitfalls of a data-driven approach

Beware of hidden bias and correlations!

CAUTION

P " AN 4 .‘.«

@lorenzospina

The danger of using data-
driven models.

We need to be extra cautious of
what the ML algorithms are

"learning” and what training sets
we build.

Unfortunately bias and
correlations are unavoidable in
stellar spectroscopy...

11



https://github.com/tingyuansen/The_Payne
The Payne Tingeta. 2019)

Physical generalization: the training sample is composed by synthetic spectra.

Input
Layer

Output
Layer

Hidden Layers

@lorenzospina 12



https://github.com/tingyuansen/The_Payne
The Payne Tingeta. 2019)

Physical generalization: the training sample is composed by synthetic spectra.

Input
Layer

Output

Hidden Layers Layer

. 4:_ - Full control on the training sample
- | You can sample the entire space of parameters.
o _
}o 0.2
2,
0.0
—0.2F

-2.0
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https://github.com/tingyuansen/The_Payne
The Payne Tingeta. 2019)

Physical generalization: the training sample is composed by synthetic spectra.

Input
Layer

Output

Hidden Layers Layer

Stellar F
parameters e b

Fitting Observed spectrum

X2 minimization WW\MWWMW

0.6 . 1
. 4:_ ' ‘ Full control on the training sample
— 0 . You can sample the entire space of parameters.
S o2f
2,
0.0F Thanks to this fast interpolator of atmospheric models you
ol ] can simply fit your spectra in order to calculate the

20 -15 -10 -05 00 o5 atmospheric parameters.
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https://github.com/tingyuansen/The_Payne

The Payne Tingeta. 2019)

Physical generalization: the training sample is composed by synthetic spectra.

0,5 0.5
oj ThePayne rey=-0577 7 o/ APOGEEDRIA eepyy_ 0577 . Analysis of the APOGEE
02 DR14 dataset with The Payne
0.0 (Ting et al 2019).
o —_
> 2 —0.2%
S u
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= 2 10
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0.25 JE
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0.00 s
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=2
W 3 -0.50
> 0.50
= bioo s —0.75+2Gyrs L 2 Gyrs
0.25 [
~1.00
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-1.0
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The pitfall of physical generalisation: the synthetic gap

Models are good approximations of reality, but they are not perfect.
Synthetic gap: differences in feature distributions between synthetic and observed spectra.

Tips to reduce the synthetic gap:
 pre-processing the spectra: matching the resolution and sampling of the spectra to a common wavelength

scale and removing the continuum.
- argumenting the spectra data set: adding Gaussian noise, rotational and radial velocities, masking telluric

regions, and zeroing flux values to mimic bad pixels

@lorenzospina
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The pitfall of physical generalisation: the synthetic gap

Models are good approximations of reality, but they are not perfect.
Synthetic gap: differences in feature distributions between synthetic and observed spectra.

Tips to reduce the synthetic gap:
 pre-processing the spectra: matching the resolution and sampling of the spectra to a common wavelength

scale and removing the continuum.
- argumenting the spectra data set: adding Gaussian noise, rotational and radial velocities, masking telluric

regions, and zeroing flux values to mimic bad pixels

t-SNE visualization of the synthetic and APOGEE spectra
Before data argumentation After data argumentation

® APOGEE
® Synthetic

Fabbro et al. (2017)
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Models are good approximations of reality, but they are not perfect.
Synthetic gap: differences in feature distributions between synthetic and observed spectra.

Tips to reduce the synthetic gap:
 pre-processing the spectra: matching the resolution and sampling of the spectra to a common wavelength

scale and removing the continuum.
- argumenting the spectra data set: adding Gaussian noise, rotational and radial velocities, masking telluric

regions, and zeroing flux values to mimic bad pixels
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The two approaches with machine learning

Physical
generalization

Data-driven

Pro. Better causual inference. Pro. Real data are a better
Cons. Models suffer from representation of the real world.
systematics and neglect part of Cons. Surveys always suffer of
physics. selection functions and hiddden biases

@lorenzospina

15



The two approaches with machine learning

Physical
generalization

Pro. Real data are a better
representation of the real world.

Cons. Surveys always suffer of
selection functions and hiddden biases

Data-driven

Pro. Better causual inference.
Cons. Models suffer from
systematics and neglect part of
physics.
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Feature transfer
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Cycle-Starnet ogiain et al. (0021)
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Cycle-Starnet opiain et ai. (2021)
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Cycle-Starnet

Limitations:
* It is not always straightforward to make the algorithm converge during training.

* |t relies on the assumption that the uncertainties in the observed spectra are
perfectly known. How a mis-characterisation of the noise affect the final results is yet
to be studied.

- Labels from the synthetic and observad domains must span the same range.
However, for a new survey we may not know the range of stellar labels.

- Cycle-Starnet may not extrapolate well for outliers and exotic stellar objects.

- Cycle-Starnet can correct for inaccurate atomic parameters in the linelist. However,
this adds much more complexity in the analysis.

- It is impossible to correct for all the possible unknowns. The synthetic gap is reduced
but not completely eliminated.

However, the study of Tranfer Features algorithms is currently proceeding at high
speed. It is very likely that in the next few years we will have better algorithms that
could alleviate all these limitations.
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Conclusions

- Machine learning algorithms are a powerful tool.
Significant computational power, huge amount of data, new algorithms: we can embrace new
methods in our research, passing from a model-drive approach to a data-driven approach.

- Machine learning algorithms applied to stellar spectroscopy have some pitfalls and limitations.
Data-driven models: bias and correlations.
Physical generalisation models: synthetic gap.
These are unavoidable pitfalls. However there are codes that achieve reasonably good results.
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...also see Nandakumar et al. (2020) for a nice example of data homogeneisation (GALAH-APOGEE) with the Cannon.

« There is a huge effort in researching new machine learning algorithms. The "state-of-the-art" is
fluid and can evolve very rapidly. Stay tuned!
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