

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/ Astronomical Image Credits: ESA/NASA/AASNova

The knee position indicates the metallicity at the time SNe Ia start to contribute to the chemical evolution and the knee is expected to be different because of the wide variety of SFHs

In the following we will see a few highlights (*very biased choice*, sorry) for four surveys (three high-res, one low/medium-res):

- Gaia-ESO observation finished; spectra public; final data release [soon] with 110000 stars
 APOGEE APOGEE-2, also South, on-going; spectra public; DR16 has 430000 stars
- GALAH on-going; spectra public; DR3 has 600000 stars

and

LAMOST on-going; public up to DR6 with about 10 million LR and 6 MR million stars

Gaia-ESO is a **public** survey so :

- Spectra (also fully reduced) are public through ESO archive (<u>http://archive.eso.org/cms.html</u>)
- Final catalog of RV, stellar parameters, abundances of 110000 stars is (will soon be) public at ESO website for catalogs (<u>https://www.eso.org/qi/)</u>

→ you can (and are welcome to) use spectra/catalog for your own science & publications

*and \sim 50 more using Gaia-ESO data

\leftrightarrow \rightarrow C $rac{1}{2}$ eso.org/	i/catalogQuery/index/121	🛠 🌍 😻 🔞 🖈 A Update 🔅	
+ES+ Southern Observatory	ESO — Reaching New Heights in Astronomy		Gala
Public Science	User Portal Intranet	Contact Site Map Search Go!	
Science Users Information > ESO Scie	nce Archive Facility > ESO Data > ESO Catalogue Facility	A. Bragaglia Logout	
ESO Data Raw Data Query Form Reduced Data Query Form Instrument Specific Query Forms	Gaia-ESO spectroscopic survey, Version 2 (Details)	n	
PI Packages Observation Schedule	Search by position		
Ambient Conditions Database User Publications	Single Target List of Targets		
Data Direct Retrieval			
Data Products			
ESO Catalogue Facility	Size: 2 degree 🗸 💿 Cone 🔾 Box		
User Help	Search & View Search & Download in FITS V format		
	Constraints per column		
	Sort Column Constraint Unit Description UCD		
	CNAME GES object name from meta.id;meta.main		
	GES_FLD GES field name from CASU meta.id		
	OBJECT GES object name from OB meta.id		
	GES_TYPE GES Classification System of meta.code.member Target Programmes		

nstrument Specific Query Forms	_
PI Packages	
Observation Schedule	
Ambient Conditions Database	
Jser Publications	
Data Direct Retrieval	
Data Products	
Data Packages	
SO Catalogue Facility	
User Help	

Query constra	ints
Input Target	trumpler 20
Resolved into:	
RA (J2000)	189.9 (12:39:45.120)
Dec (J2000)	-60.7 (-60:38:06.00)
Cone size	2 degree
New Query	Modify Query

Trumpler 20 was observed in first Gaia-ESO runs + archive spectra were added

Query Results

582 records found (out of 25533) Download in FITS V Format Only selected columns												
Elapsed time: 2.345 s												
Results 1-10 of 582 Show 10 🗸 results per page												
Text boxes under columns select matching rows Apply Filter Clear Filter												
CNAME	GES_FLD	OBJECT	GES_TYPE	SETUP	RA	DECLINATION	VRAD	E_VRAD	TEFF	E_TEFF	«	»
String	String	String	String	String	Number	Number	Number	Number	Number	Number		
12395448- 6037128	Trumpler20	616	GE_CL	HR15N	189.97700	-60.62022	-41.0111	0.592317	6421.00	233.000		
12395806- 6038445	Trumpler20	3279	AR_CL		189.99192	-60.64569	-19.7705	0.222350				
12395682- 6031599	Trumpler20	6048	AR_CL		189.98675	-60.53331	-63.2498	0.118239				
12395021- 6037168	Trumpler20	3946 621	AR_CL GE_CL	HR15N	189.95933	-60.62133	2.42643	0.242213	6208.00	86.0000		
12392366- 6041524	Trumpler20	3874	GE_CL	HR15N	189.84858	-60.69789	-22.0761	1.13316	6383.00	214.000		
12392629- 6041204	Trumpler20	2180	AR_CL		189.85954	-60.68900	-46.0157	0.102399				
12393638- 6035181	Trumpler20	5999	GE_CL	HR15N	189.90158	-60.58836	-39.2539	0.397890	5921.00	216.000		

62 Open Clusters extensively observed by Gaia-ESO (+existing archive)
 20+ directly retrieved from UVES-FLAMES archive

Topics touched by Gaia-ESO papers on open clusters:

- Properties of individual clusters and star forming regions (membership, metallicity, updated derivation of age & distance)
- > Internal kinematics and substructures with high-precision radial velocities
- Pre-main sequence stars (empirical)
- > Detailed chemical abundances and their variation with evolutionary phase (e.g. C, N, Li, Na, and others)
- Massive/young stars
- Characterisation of low-mass stars
- Connections rotation/chromospheric activity/accretion
- > Distribution of metallicity and elements in the Milky Way (aka "gradient")
- > Open clusters as calibrators (e.g. for stellar evolutionary models)
- Chemical clocks and their calibration and applicability (e.g. [C/N], [Y/Mg], Li)
- In general, stellar clusters are very good particle test / calibrators / validating sets as their stars share a common origin, age, initial chemical composition

Note : Gaia-ESO observations were entirely conducted prevous to Gaia releases, but can be integrated in the "Gaia Universe", as was the original intention of this Gaia-precursor survey

The Gaia-ESO Survey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters Spina+ 2017

Cluster members: above the solid line

Younger clusters metal-poorer than older ones ... Chemical evolution in the disc ?

Analysis problems ? [e.g. Baratella+2020]

The Gaia-ESO Survey: open clusters in Gaia-DR1. A way forward to stellar age calibration

Density

6500

0.2 F

0.1

.0./ _0./

-0.

-0.2

-0.3L 5.0

Ks [mag] 1

♦ ♦ MS

TO

• • • RGB

The Gaia-ESO survey: 3D NLTE abundances in the open cluster NGC 2420 suggest atomic diffusion and turbulent mixing are at the origin of chemical abundance variations

log(g)

Age of stars in high- α and low- α disc in

solar vicinity observed by Gaia-ESO

-0.1

-0.6

-0.4

-0.2

[Fe/H]

0.0

0.2

o.4 age

The Gaia-ESO survey: the non-universality of the age-chemical-clocks-metallicity relations in the Galactic disc

The Gala-Loo survey. the non-universality of the age-chemical-clocks-metallicity relations in the Galac

→ but also of metallicity (i.e. star formation history) : new here

Casali+ 2020

APOGEE is part of the **Sloan Digital Sky Survey**

(Apache Point Observatory Galaxy Evolution Experiment)

Accessing the Data

Data Release 16 includes six types of data: **images**, **optical spectra** (SDSS/SEGUE/BOSS/SEQUELS/eBOSS), **infrared spectra** (APOGEE/APOGEE-2), **IFU spectra** (MaNGA), **stellar library spectra** (MaStar), and **catalog data** (parameters measured from images and spectra, such as magnitudes and redshifts).

The SDSS offers several different online data access tools, each suited to a particular need:

Website	Purpose	
DR16 Science Archive Server	Interactive spectra and image mosaics	
Marvin	Visualisation and analysis tool for MaNGA data cubes and maps	
DR16 SkyServer	Browser-based access to the Catalog Archive Server (CAS) database, with resources for learning SQL and projects to teach science	
CasJobs	Flexible advanced SQL-based interface to the CAS, for all data releases (quick registration required). To select data from DR16, choose DR16 as the query context.	n
DR16 FITS	Direct download access to DR16 FITS data files for experts	Pa all
Data Model	Details of the Science Archive Server (SAS) directory structure, file formats, and the contents of each file	all ap ca co

ndex of /sas/dr16/apogee/spectro/aspcap/r12/I33/

File Name ↓	File Size ↓
Parent directory/	-
allCal/	-
allStar-r12-l33/	-
apo1m/	-
apo25m/	-
cal/	-
config/	-
html/	-
lco25m/	-
allCal-r12-l33.fits	358695360
allCal-r12-l33.html	4667
allPlates-r12-l33.fits	1463040
allStar-r12-l33.fits	3229427520
allStar-r12-l33.html	6503
allStarLite-r12-l33.fits	987831360
allVisit-r12-l33.fits	1720120320
spectro_aspcap_r12_l33.sha1sum	446

Papers with "APOGEE" in abstract

property estimate method resolution previous obtain observe time derive provide population abundance large datum galactic ratio use gaia space compare velocity sample base point arsurvey work data Ⴢ catalog suggest result study milky evolution set way findpresent high observatory band radial Ste spectroscopic analysis identify measurement new formation

Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – II. The Southern clusters and overview

- ~2300 stars in 31 GCs (of the 40+ observed)*
- Fe, C, N, O, Mg, Al, Si, K, Ca, Ce, and Nd
- Intrinsic Fe spread; shape and statistics of Al-Mg and N-C anti-correlations as a function of cluster mass, luminosity, age, and metallicity
- No metallicity spread in M22, NGC1851 (at odds with previous works)
- \succ Al enrichment \propto GC mass

The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open ClustersUsing SDSS/APOGEE DR16Donor+ 2020

Chemical tagging with APOGEE: discovery of a large population of N-rich stars in the inner Galaxy

[Fe/H]

Schiavon+ 2017

Age dissection of the Milky Way discs: Red giants in the Kepler field

Solar-like oscillating giants: **APOGEE** Teff, [Fe/H], $[\alpha/M] + Kepler v_{max}$, $\Delta v + RV + Gaia + evolutionary models$ $<math>\rightarrow$ mass \rightarrow age

APQGEE

<u>Miglio+ 2021</u>

Abundance pattern of MW satellites

GALAH

Update

\leftarrow \rightarrow C \square galah-survey.org

DATA RELEASE 3 \checkmark GALACTIC ARCHAEOLOGY THE SURVEY \checkmark THE DETAILS \checkmark THE RESULTS \checkmark CONTACT \checkmark Q

☆

GALAH Survey

GALactic Archaeology with HERMES

This picture shows spatial coverage of stars observed with HERMES Image credit: Buder *et al.*, 2021

https://www.galah-survey.org/

Key results (as from GALAH Survey webpage)

- Dissection of the stellar disks —
- The accreted halo
- Chemical tagging
- ➢ Lithium[∗]
- Calibrating other surveys

- Dissection of the stellar disks in terms of age, velocity, action, and location + chemistry
- First follow-up of Gaia's discovery of the "phase spiral" perturbation in the local disc
- Differing abundance trends between the thin and thick disk as well as with metallicity and age
- Nearly 40% of stars in the solar vicinity have metallicities higher than the local ISM
- Radial migration is an important process in the evolution of disk galaxies

* Lithium (⁷Li) measured from 6708 Å line \rightarrow optical spectra, medium-to-high resolution works better

Key results (as from GALAH Survey webpage)

- Dissection of the stellar disks
- The accreted halo
- Chemical tagging
- ➤ Lithium*
- Calibrating other surveys

- RVs and abundances used to untangle kinematical halo signatures
- Chemical tagging of the Fimbulthul stellar stream to $\boldsymbol{\omega}$ Centauri
- Orbital & abundance properties of the Helmi streams
- r-process in accreted Gaia-Enceladus show higher ratios of [Eu/Mg] than *in-situ*

* Lithium (⁷Li) measured from 6708 Å line -> optical spectra, medium-to-high resolution works better

stream to the globular cluster ω Centauri

The GALAH Survey: Chemically tagging the Fimbulthul

R-process enhancements of Gaia-Enceladus in GALAH DR3

Key results (as from GALAH Survey webpage)

- Dissection of the stellar disks
- The accreted halo
- Chemical tagging
- ➤ Lithium*
- Calibrating other surveys

- Blind chemical tagging
- Unsupervised classification with t-SNE to detect peculiar objects using stellar spectra
- Recovering Gaia-Enceladus stars with chemistry and dynamics

* Lithium (⁷Li) measured from 6708 Å line -> optical spectra, medium-to-high resolution works better

The GALAH Survey: Classification and Diagnostics with t-SNE Reduction of Spectral Information

The GALAH Survey: Chemical tagging and chrono-chemodynamics of accreted halo stars with GALAH+ DR3 and Gaia eDR3

Key results (as from GALAH Survey webpage)

- Dissection of the stellar disks
- The accreted halo
- Chemical tagging
- Lithium*
- Calibrating other surveys
 - 100000 stars with Li: investigate why dwarfs show too little lithium and some giants too much
 - Accreted stars show same Spite plateau of in-situ stars (cosmological Li problem not due to MW)
 - Red clump stars more probably Li-rich than RGB (but Li production general)

* Lithium (⁷Li) measured from 6708 Å line \rightarrow optical spectra, medium-to-high resolution works better

Key results (as from GALAH Survey webpage)

- Dissection of the stellar disks
- The accreted halo
- Chemical tagging
- ➤ Lithium*
- Calibrating other surveys

- Crucial as a cross-check and calibration of other large surveys
- Largest, very precise RV (0.1 km/s) catalog
- TESS input catalog
- Used by RAVE, GALAH, Skymapper, LAMOST, etc to validate/calibrate

* Lithium (⁷Li) measured from 6708 Å line -> optical spectra, medium-to-high resolution works better

SkyMapper stellar parameters for Galactic Archaeology on a grand-scale

Suggested watching if you want to see/know more on GALAH

Talk videos All talks were broadcast and recorded via Zoom. When available each talk title is linked to recording to the talk on YouTube. There is also a playlist for <u>Day 1</u>, <u>Day 2</u>, <u>Day 3</u>

LAMOST survey contains two main parts:

the LAMOST ExtraGAlactic Survey (LEGAS), and the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey of Milky Way stellar structure.

The unique design of LAMOST enables it to take 4000 spectra in a single exposure to a limiting magnitude as faint as r=19 at the resolution R=1800.

LAMOST is a reflecting Schmidt telescope with its optical axis fixed along the north-south meridian. Both the Schmidt mirror (MA) and the primary mirror (MB) are segmented. The focal surface is circular with a diameter of 1.75 meters (\sim 5°), the 4000 fibers are almost evenly distributed over it.

ightarrow ightarro

		-
Home	Data Access	Doc

cuments Help C

LAMOST DR6 v2

☆

Low Resolution Catalog

Catalog	All	Document	9,911,337 flux(relatively)- and	
LAMOST LRS General Catalog	FITS CSV	Description	wavelength-calibrated spectra	
LAMOST LRS A, F, G and K Star Catalog	FITS CSV	Description	9,231,057 stellar spectra, 177,270 galaxy spectra,	
LAMOST LRS A Star Catalog	FITS CSV	Description		
LAMOST LRS M Star Catalog	FITS CSV	Description	62,168 quasar spectra,	
LAMOST LRS Observed Plate Information Catalog	CSV	Description	and 440,842 unknown	
LAMOST LRS Input Catalog	TXT	Description	- Coverage: 3690-9100 Å at R = 1800	

Medium Resolution Catalog

_					
	Catalog	All	Document	MRS includes the time-domain	
LAMOST MRS General Catalog		FITS CSV	Description	& the non time-domain surveys	
LAMOST MRS Parameter Catalog		FITS CSV	Description	Coverage: 4950-5350 and 6300-6800 at P=7000	
LAMOST MRS Observed Plate Information	ation Catalog	CSV	Description		
LAMOST MRS Input Catalog		TXT	Description	at R=7000	

Publicly released data may be used freely, but should include the following acknowledgment (see http://www.lamost.org/lmusers/cms/article/view?id=1): Guoshoujing Telescope (the Large Sky Area Multi-Object Fiber Spectroscopic Telescope LAMOST) is a National Major Scientific Project built by the Chinese Academy of Sciences. Funding for the project has been provided by the National Development and Reform Commission. LAMOST is operated and managed by the National Astronomical Observatories, Chinese Academy of Sciences.

Copyright © 2005-2020, National Astronomical Observatories, Chinese Academy of Sciences

Papers with "LAMOST" in abstract

Masses and Ages for 230,000 LAMOST Giants, via Their Carbon and Nitrogen Abundances

<u>Martig+2015</u> : Red giant masses and ages derived from carbon and nitrogen abundances (APOGEE + Kepler) use C,N + log g, Teff, [Fe/H] → mass (calibrated with asterosismology) → age Ho+ 2017

Masses and Ages for 230,000 LAMOST Giants, via Their Carbon and Nitrogen Abundances

A Large and Pristine Sample of Standard Candles across the Milky Way: ~100,000 Red Clump Stars with 3% Contamination (and 9% contamination level for ~210,000 – compare to 20%)

Exploring open cluster properties with Gaia and LAMOST

Zhong J+ 2020

LAMOST Medium-Resolution Spectroscopic Survey (LAMOST-MRS): Scientific goals and survey plan

- > Binarity/Multiplicity
- Stellar pulsation
- Star formation
- Emission nebulae
- Galactic archaeology
- Host stars of exoplanets
- Open clusters

LAMOST Medium-Resolution Spectroscopic Survey

SB

ST

8000

6000

 $T_{\rm eff}$ (K)

7000

5000

4000

log g (dex) w

<u>Wang+ 2019</u> : Properties of Radial Velocities Measurement Based on LAMOST-II Medium-resolution Spectroscopic Observations

RVs with precision \approx 1 km/s for million of stars to G \approx 15 and very accurate (z.p. \approx 0 wrt std stars)

<u>Li+ 2021</u>: Double-, triple-line spectroscopic candidates in the LAMOST Medium-Resolution Spectroscopic Survey

1.3 million DR7 MRS blue arm spectra,3133 spectroscopic binary (SB) and132 spectroscopic triple (ST) candidatesi.e. 1.2% of the LAMOST-MRS stars.95% of candidates are new discoveries

AMOST

