

Nov 3 – 4, 2021 Virtual meeting

GrailQuest

Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time

& HERMES

High Energy Rapid Modular Ensamble of Satellites

Hunting for Gravitational Wave Electromagnetic Counterparts Probing Space-Time Quantum Foam

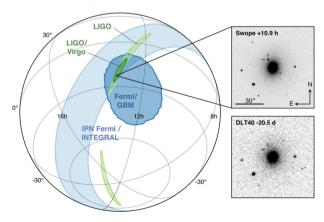
On behalf of the HERMES and GrailQuest Collaborations

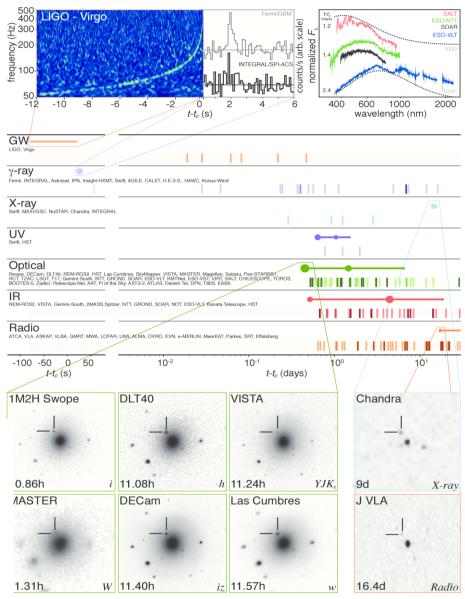
Two compelling (astro)-physical problems for the next decades

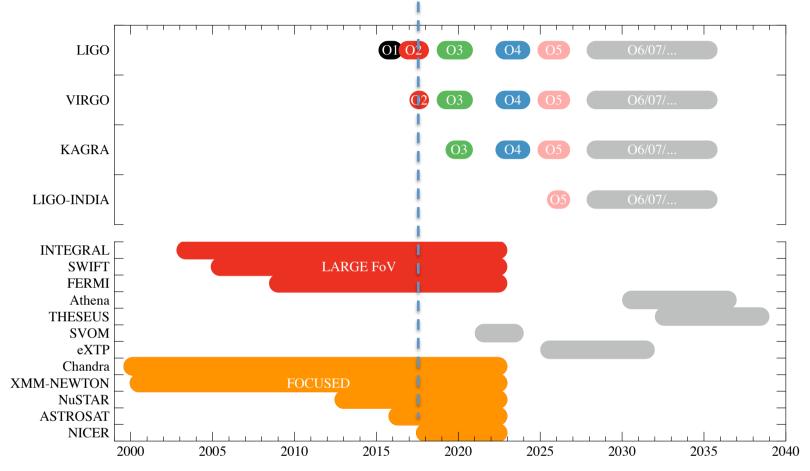
- Development of Multi-Messenger astronomy (EM counterparts of GW events)
- Is physical space(time) granular or continuous?


Zeno's paradoxes and the existence of a "fundamental minimal length" in some string theories: "Atoms of Space", an effective expression invented by Smolin

dispersion law for light *in vacuo*, that linearly depends on the ratio between photon energy and Planck energy


Distributed Astronomy is the key!


The birth of Multi–Messenger Astronomy


GW170817

- NS-NS merging
- Host galaxy NGC 4993
- ~ 40 Mpc
- 70 observatories

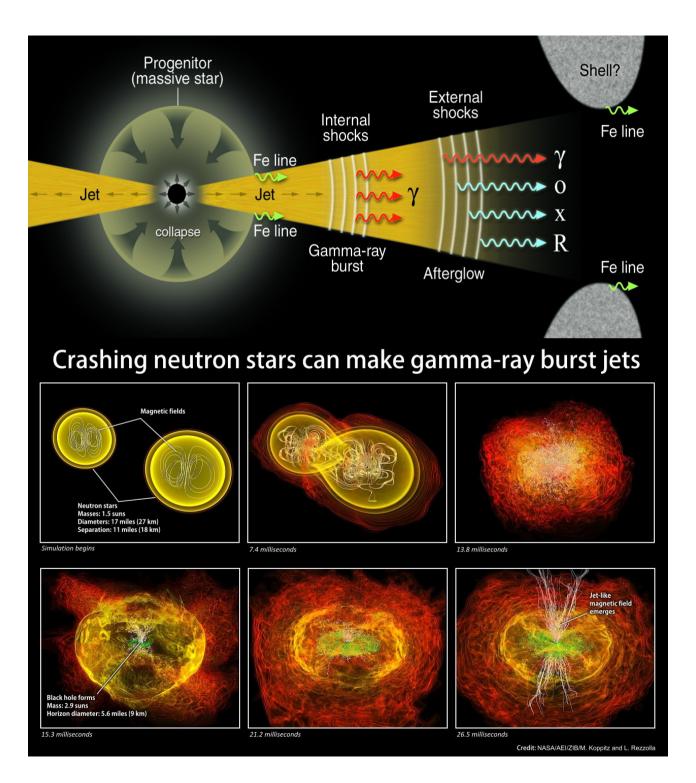
The Multi-Messenger Astronomy Paradox I

- 2025+ LIGO/VIRGO/KAGRA/LIGO-INDIA will detect GW170817 within ~
 300 Mpc with localisation accuracy ~10 deg²
- FERMI GBM would not have been able to detect GRB 170817A at D > 60 Mpc

The Multi-Messenger Astronomy Paradox II

One of he most thrilling research field in Science: the whole field based on ONE discovery: GRB 170817A - GW170817 connection

Fact **# 1**:

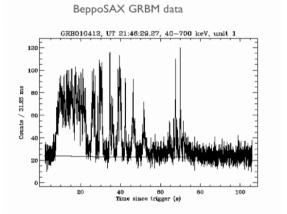

within 2025 LIGO – Virgo – KAGRA – Einstein Telescope GW antennas will provide detectability of NS–NS mergers events like GW170817 within ≅ 300 Mpc Localization accuracies: 100 square deg (LIGO – Virgo) 10 square deg (LIGO – Virgo – KAGRA)

Fact **# 2**:

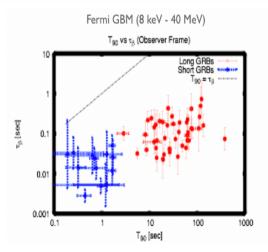
GBM would not have been able to detect an event 60% fainter than GRB 170817A. Kilonova events seen at angles \geq 25 degrees are undetectable by GBM for distances \geq 60 Mpc.

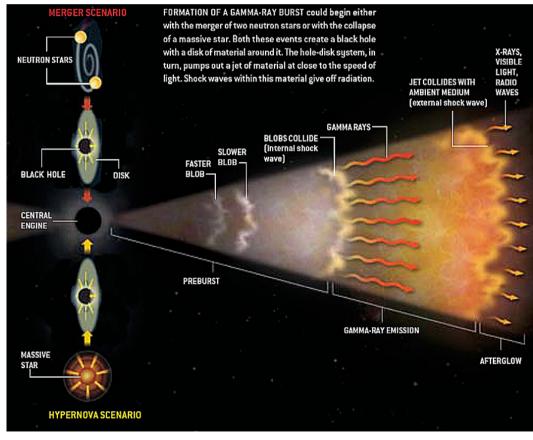
Fact # 1 + Fact # 2 → No EM counterpart detected, no party! (quoting George Clooney)

We need a All-sky Monitor at least 10÷100×GBM Area for letting Multi–Messenger Astronomy to develop from infancy to maturity!


GRB progenitors

Long GRB: BH collapse of a massive star


Short GRB: NS–NS binary system coalescence (emission of GW)


GRB - Fireball model

- jet emission (about 10° opening angle)
- multiple collision of relativistic shells ($\Gamma = [1 (v_{jet}/c)^2]^{-1/2} \ge 100$)
- explains rapid variability
- synchrotron radiation and inverse Compton scattering
- energetics: 10^{51} ergs released in 50 s

Data 40-700 keV (A=1136 cm2, courtesy of F. Frontera)

HERMES & GrailQuest in a nutshell

Aims:

all Sky Monitor for fast and accurate detection of the position of bright, transient, high-energy events and All Sky Monitor of known bright sources (timing):

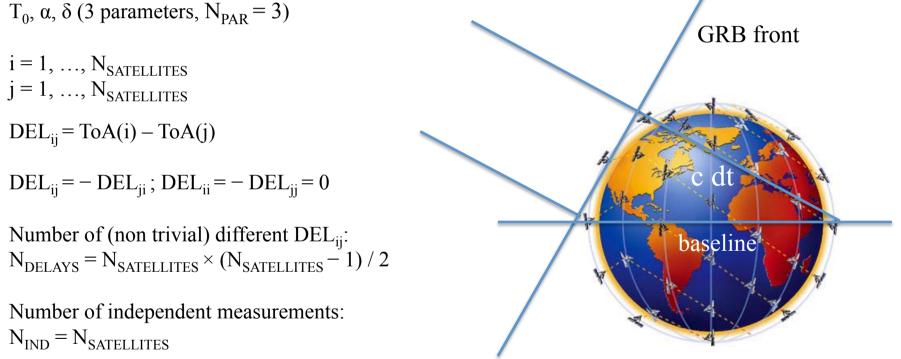
- GRBs
- GW events
- high-energy counterparts of Fast Radio Bursts
- flares from Magnetars
- GrailQuest (only) first dedicated experiment in Quantum Gravity


How:

temporal triangulation of signals detected by a swarm of LEO nano/micro/small satellites equipped with:

- keV-Mev scintillators,
- sub µs time resolution
- temporal triangulation

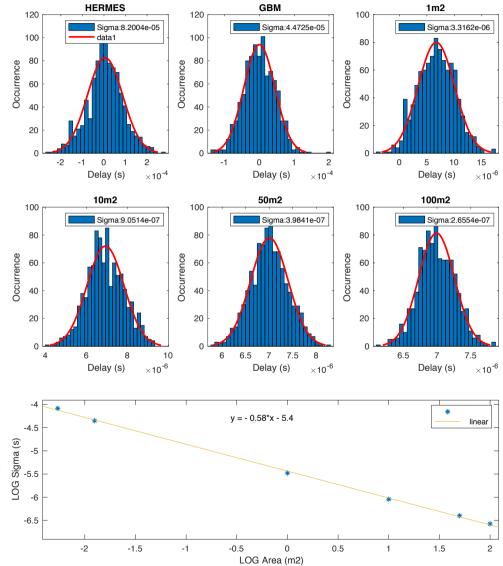
Pros:


- modularity,
- limited cost,
- quick developement

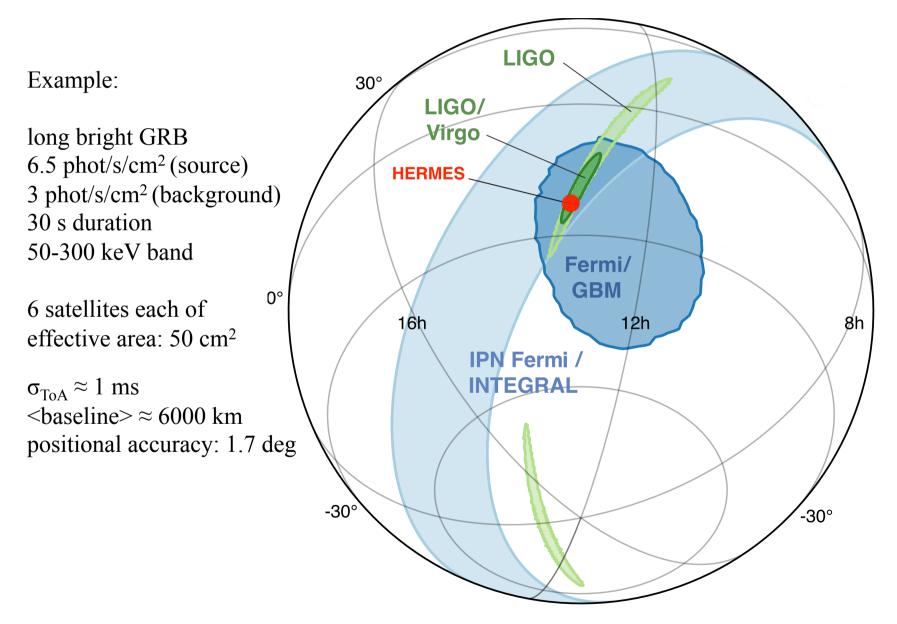
Principles of temporal triangulation

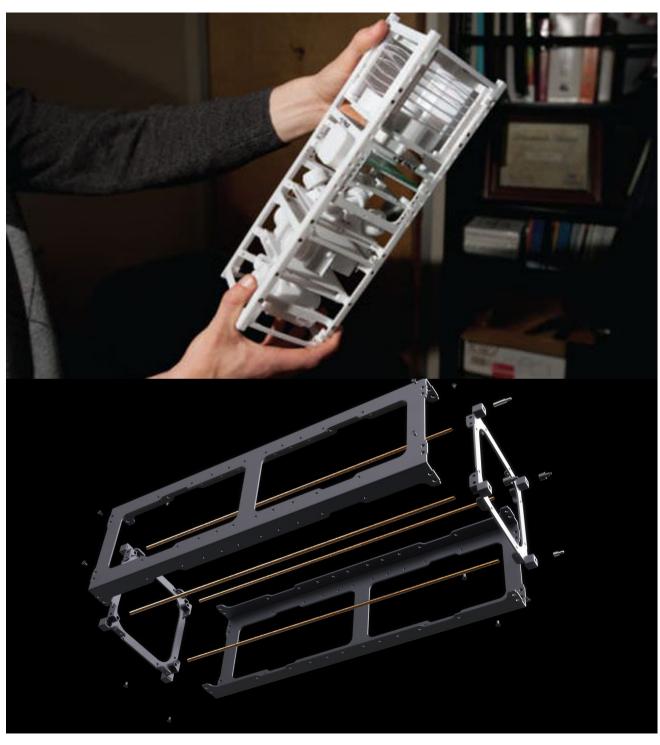
Determination of source position through Delays in Time of Arrival (ToA) of an impulsive event (variable signal) over 3 (or more) spatially separate detectors

Transient source in the sky defined by time of the event, position in the sky:


Statistical accuracy in determining α and δ with N_{SATELLITES}: $\sigma_{\alpha} \approx \sigma_{\delta} = c \sigma_{ToA} / < baseline > \times (N_{IND} - N_{PAR})^{-1/2}$

Accuracy in delays from cross-correlation analysis


Accuracy in determining delays from a bright long GRB with $\Delta t = 40$ s; $\phi_{GRB} = 6.5$ phot/s/cm²; $\phi_{BCK} = 2.8$ phot/s/cm²; variability timescale ≈ 5 ms;


1000 pair of Monte-Carlo simulations for detectors of different effective areas A

Best fit formula: $\sigma_{\text{DELAYS}} \approx \sigma_{\text{ToA}} = 3.3 \ \mu\text{s} \times (\text{A}/1 \ \text{m}^2)^{-0.58}$

GW Triangulation & EM counterparts (Fermi GBM, INTEGRAL, HERMES Pathfinder)

HERMES 3U CubeSat

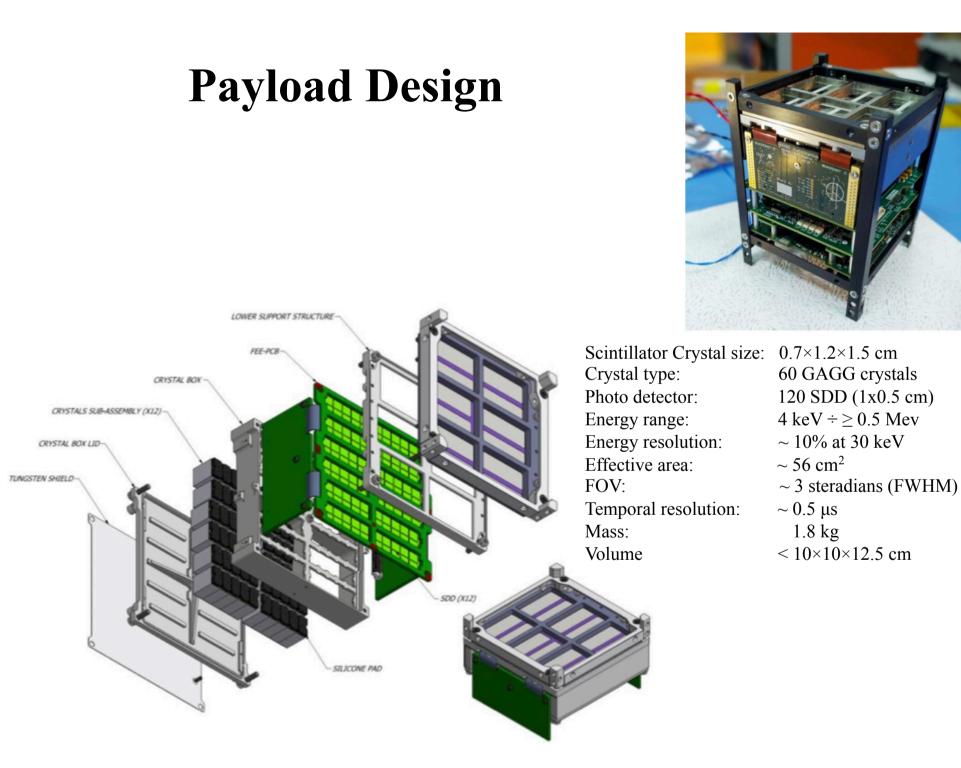
10×10×30 cm

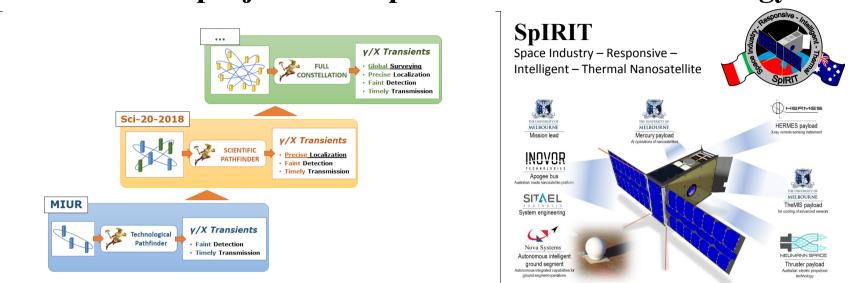
•

- Gyroscope Stability on 3 axes
- FoV(FWHM) \approx 3 steradians

On board Systems:

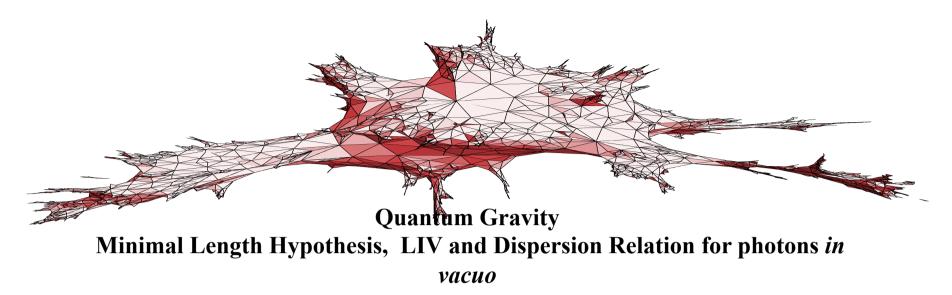
Data recording:


- continuous on temporary buffer
- trigger capability for data recording
- continuous download of data (VHF) for monitoring of known bright sources


Data download:

- S-band download on ground stations (equatorial orbit)
- VHF data transmission
- IRIDIUM constellation for data transmission

Spacecraft


HERMES project development – incremental strategy

Funding status at 2020, December

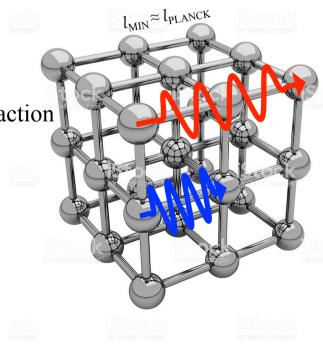
ASI (Italian Space Agency) – 23/12/2016:	€ 500,000
MIUR (Italian Ministry of University and Research) and ASI – 29/11/2017:	€ 1,650,915 (MIUR)
	€ 815,085 (ASI)
EU Horizon 2020 – Call: H2020-SPACE-2018-2020 – 17/07/2018:	€ 3,318,450
ASI (Italian Space Agency) – internal funding 05/02/2019	€ 1,900,000
Total Funding (at 12/2020):	€ 8,184,450

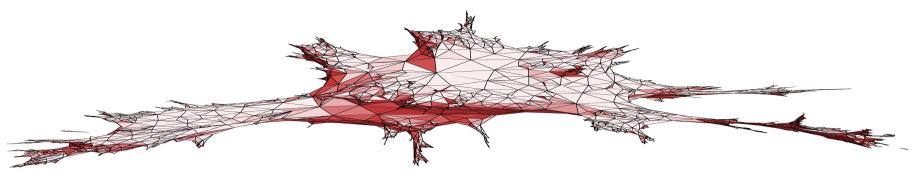
Incremental strategy:

Hermes Technological Patfinder (ASI funding):3 3U satellites equatorial (launch 2023)Hermes Scientific Patfinder (EU H2020 funding):3 3U satellites equatorial (launch 2023)Hermes on Spirit (ASI + Austalian Space Agnecy):1 6U satelliteSSO orbit (launch 2022)

Existence of a Minimal Length (String theories, etc.)

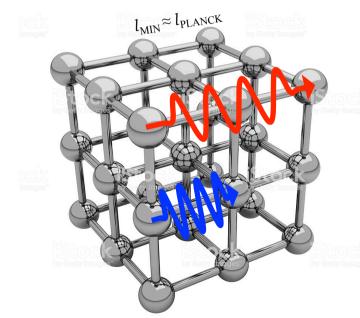
$$l_{\rm MIN} \approx l_{\rm PLANCK} = [Gh/(2\pi c^3)]^{1/2} = 1.6 \times 10^{-33} \text{ cm}$$


implies:


i) Lorentz Invariance Violation (LIV): no further Lorentz contraction

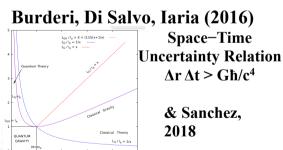
ii) Space has the structure of a crystal lattice and therefore

iii) Existence of a dispersion law for photons in vacuo


$$\begin{split} |v_{phot}/c - 1| &\approx \xi \, E_{phot}/(M_{QG} \, c^2)^n \\ \xi &\approx 1 \\ n &= 1,2 \text{ (first or second order corrections)} \\ M_{QG} &= \zeta \, m_{PLANCK} \qquad (\zeta &\approx 1) \\ m_{PLANCK} &= (hc/2\pi G)^{\frac{1}{2}} &= 21.8 \, 10^{-6} \, g \end{split}$$

First and second order Dispersion Relation for photons in vacuo

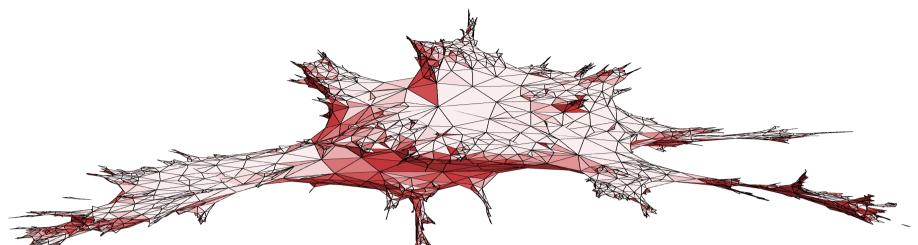
LIV theories

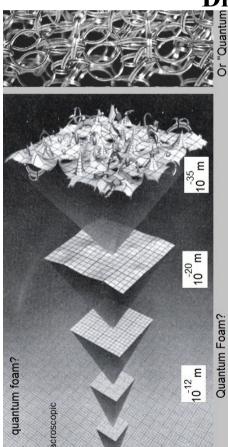


No LIV theories

PHYSICAL REVIEW D 93, 064017 (2016) Quantum clock: A critical discussion on spacetime

Luciano Burderi,^{1*} Tiziana Di Salvo,² and Rosario Iaria² ¹Dipartimento di Fisica, Università degli Studi di Cagliari, SF Mosserrato-Senu, KM 0.7, 09042 Monserrato, Italy ²Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, via Architeji 50, 90123 Palemon, Italy (Received 5 July 2012; published 8 March 2016) cally discuss the measure of xero short time intervals By means (a Gedander


We entitually discuss the measure of very short time intervals. By means of a *Gedankenexperiment*, we describe an ideal clock based on the occurrence of completely random events. Many pervious thought experiments have suggested fundamental Planck-scale limits on measurements of distance and time. Here we present a new type of thought experiment, based on a different type of clock, that provide further support for the existence of such limits. We show that the minimum time interval Δr that this clock can measure scales as the inverse of its size Δr . This implies an uncertainty relation between space and time: $\Delta r\Delta t > Gh/c^4$, where G, h, and c are the gravitational constant, the reduced Planck constant, and the speed of light, respectively. We outline and briefly discuss the implications of this uncertainty conjecture.



Or "Quantum Loops" ?

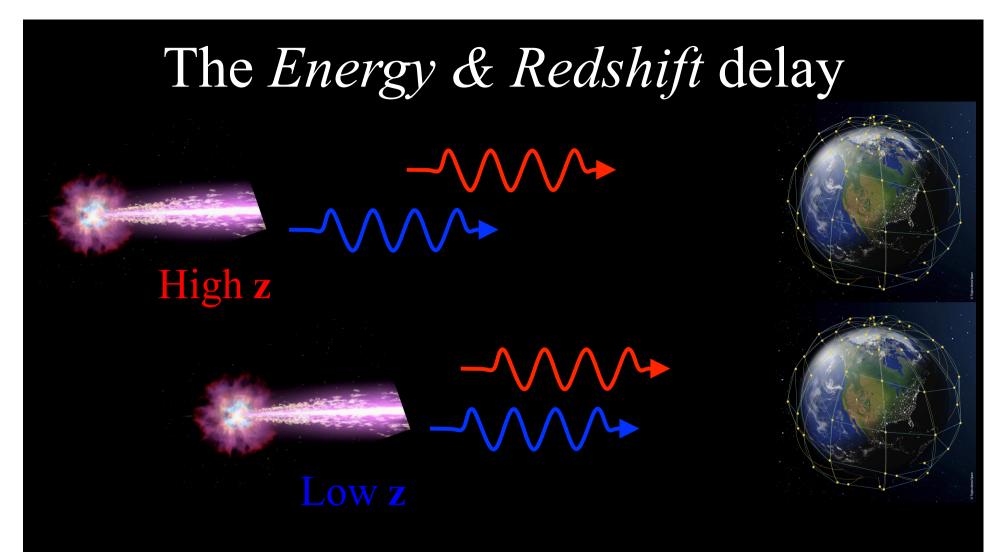
First Order Dispersion Relation $v_{phot}/c \approx 1 - \xi E_{phot}/(M_{Planck} c^2)$ Second Order Dispersion Relation $v_{phot}/c \approx 1 - \xi \ [E_{phot}/(M_{Planck} \ c^2)]^2$

Loop Quantum Gravity (Rovelli)

Dispersion Relation for photons *in vacuo* and Delays in travel time

Accumulation of delays in light propagation:

$$\Delta t_{\rm MP/LIV} = \xi \left(D_{\rm TRAV} / c \right) \left[\Delta E_{\rm phot} / (M_{\rm QG} \ c^2) \right]^n$$


The distance traveled by photons takes into account the cosmological expansion:

 $D_{\text{TRAV}}(z) = (c/H_0) \int_0^z d\beta (1+\beta) / [\Omega_{\Lambda} + (1+\beta)^3 \Omega_M]^{1/2}$

z: cosmological redshift

 Ω_{Λ} : ratio between the energy density due to the cosmological constant and the critical (closure) density of the Universe

 Ω_M : ratio between the energy density due to the matter and the critical (closure) density of the Universe

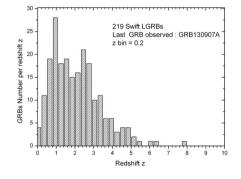
Time lags caused by Quantum Gravity effects:

- $\propto |E_{phot}(Band II) E_{phot}(Band I)|$
- $\propto D_{GRB}(z_{GRB})$

Time lags caused by prompt emission mechanism:

• complex dependence from $E_{phot}(Band II)$ and $E_{phot}(Band I)$

19


• independent of $\overline{D_{GRB}(z_{GRB})}$

GRBs & Quantum Gravity

$$\frac{\mathbf{d}\mathbf{N}_{\mathbf{E}}(\mathbf{E})}{\mathbf{d}\mathbf{A} \mathbf{d}\mathbf{t}} = \mathbf{F} \times \begin{cases} \left(\frac{\mathbf{E}}{\mathbf{E}_{\mathrm{B}}}\right)^{\alpha} \exp\{-(\alpha - \beta)\mathbf{E}/\mathbf{E}_{\mathrm{B}}\}, \ \mathbf{E} \leq \mathbf{E}_{\mathrm{B}}, \\ \left(\frac{\mathbf{E}}{\mathbf{E}_{\mathrm{B}}}\right)^{\beta} \exp\{-(\alpha - \beta)\}, \qquad \mathbf{E} \geq \mathbf{E}_{\mathrm{B}}. \end{cases}$$

 $\sigma_{CC} \approx 0.46 \ \mu sec \times (2.6 \ 10^8/N)^{0.5}$

$$\Delta t_{MP/LIV} = \xi (D_{TRAV}/c) [\Delta E_{phot}/(M_{QG} c^2)]^n$$
$$D_{TRAV}(z) = (c/H_0) \int_0^z d\beta (1+\beta) / [\Omega_{\Lambda} + (1+\beta)^3 \Omega_M]^{1/2}$$

Bright Long GRB: 8.00 (0.86 BCK) c/s (50 ÷ 300 keV) – $\Delta t = 25$ s Spectral shape: *Band* function with $\alpha = -1$, $\beta = -2.5 \div -2.0$, $E_{\rm B} = 225$ keV Detector effective area: A = 100 m² Accuracy in cross–correlation in function of the number of photons: $E_{CC}(N) = 0.46 \,\mu {\rm s} \sqrt{2.6 \, 10^8/N}$ $\Lambda {\rm CDM}$ cosmology: $\Omega_{\Lambda} = 0.6911$ and $\Omega_{\rm Matter} = 0.3089$

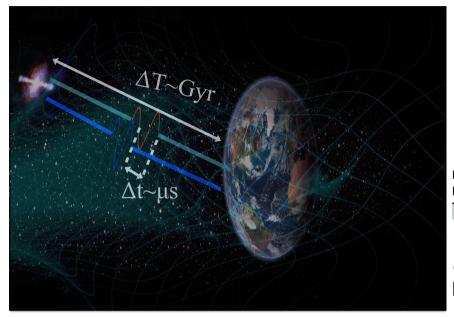
Energy band	$E_{\rm AVE}$	$N \\ (\beta = -2.5)$	$E_{CC}(N)$	$N \\ (\beta = -2.0)$	$E_{CC}(N)$	$\Delta T_{\rm LIV}~(\xi=1.0,~\zeta=1.0)$			
${ m MeV}$	MeV	(p = 2.0) photons	$\mu { m s}$	$(\beta = -2.0)$ photons	$\mu { m s}$	$\begin{array}{c} \mu \mathrm{s} \\ z = 0.1 \end{array}$	μs z = 0.5	$\begin{array}{c} \mu \mathrm{s} \\ z = 1.0 \end{array}$	$\begin{array}{c} \mu \mathrm{s} \\ z = 3.0 \end{array}$
0.005 - 0.025	0.0112	3.80×10^{8}	0.38	3.02×10^{8}	0.43	0.04	0.25	0.51	1.42
0.025 - 0.050	0.0353	1.40×10^{8}	0.62	1.17×10^{8}	0.69	0.13	0.72	1.46	4.10
0.050 - 0.100	0.0707	1.10×10^8	0.71	9.98×10^7	0.74	0.27	1.43	2.93	8.21
0.100 - 0.300	0.1732	$8.98 imes 10^7$	0.79	1.00×10^8	0.74	0.66	3.51	7.19	20.10
0.300 - 1.000	0.5477	$2.07 imes 10^7$	1.64	$3.82 imes 10^7$	1.20	2.09	11.11	22.72	63.56
1.000 - 2.000	1.4142	$2.63 imes 10^6$	4.56	$8.20 imes 10^6$	2.60	5.40	28.68	58.67	164.12
2.000 - 5.000	3.1623	$1.07 imes 10^6$	7.19	$4.92 imes 10^6$	3.35	12.07	64.12	131.19	367.00
5.000 - 50.00	15.8114	3.52×10^5	12.54	2.95×10^6	4.33	60.35	320.62	656.00	1834.98

Location of GRBs with fleets of satellites and redshifts

Accuracy in determining delays from Monte-Carlo simulations of 100 pairs of GRBs of fluence 260 (112 BCK) photons/cm² with detectors of different effective areas:

 $σ_{DELAYS} ≈ σ_{ToA} = 3.3 µs × (A/1 m²)^{-0.58}$ Accuracy in determining α and δ with N_{SATELLITES} (N_{IND} = N_{SATELLITES}; N_{PAR} = 3, T₀, α, δ): $σ_α ≈ σ_\delta = c σ_{ToA} / <baseline > × (N_{IND} - N_{PAR})^{-1/2}$

Large fleet of small satellites in Low Earth Orbits: $A = 30 \times 30 \text{ cm} \approx 0.1 \text{ m}^2$ $\sigma_{ToA} \approx 12.5 \mu s$ $N_{SATELLITES} \approx 1000$ $< baseline > \approx 6,000 \text{ km}$


$\sigma_{\alpha} \approx \sigma_{\delta} \approx 4 \ arcsec$

Three satellites with detectors of 1 m² effective area in Earth–Moon Lagrangian points: $A \approx 1.0 \text{ m}^2$ $\sigma_{ToA} \approx 3.3 \text{ } \mu\text{s}$ $N_{SATELLITES} = 3$

<

$\sigma_{\alpha}\approx\sigma_{\delta}\approx0.5\;arcsec$

Once the position is known, the redshift of the GRB host galaxy is obtained through pointed observations of large optical telescopes.

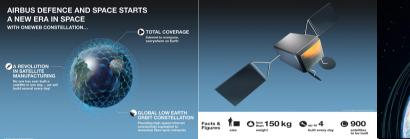
GrailQuest selected for the 2019 Call for White Papers for the Voyage 2050 long term plan in the ESA Science Programme

Experimental Astronomy https://doi.org/10.1007/s10686-021-09745-5

ORIGINAL ARTICLE

GrailQuest: hunting for atoms of space and time hidden in the wrinkle of Space-Time

A swarm of nano/micro/small-satellites to probe the ultimate structure of Space-Time and to provide an all-sky monitor to study high-energy astrophysics phenomena


Download paper at arXiv:1911.02154v2

L. Burderi^{1,2,3} · A. Sanna¹ · T. Di Salvo^{2,3,4} · L. Amati⁵ · G. Amelino-Camelia^{6,7} · M. Branchesi⁸ · S. Capozziello⁹ · E. Coccia⁸ · M. Colpi¹⁰ · E. Costa¹¹ · N. D'Amico^{1,2} · P. De Bernardis¹² · M. De Laurentis⁹ · M. Della Valle¹³ · H. Falcke¹⁴ · M. Feroci¹¹ · F. Fiore¹⁵ · F. Frontera¹⁶ · A. F. Gambino⁴ · G. Ghisellini¹⁷ · K. C. Hurley¹⁸ · R. Iaria⁴ · D. Kataria¹⁹ · C. Labanti²⁰ · G. Lodato²¹ · B. Negri²² · A. Papitto²³ · T. Piran²⁴ · A. Riggio¹ · C. Rovelli²⁵ · A. Santangelo²⁶ · F. Vidotto²⁷ · S. Zane¹⁹

Received: 29 July 2020 / Accepted: 22 March 2021 / Published online: 03 August 2021 \circledcirc The Author(s) 2021

Starlink Constellation 12,000 sats SpaceX (Elon Musk)

- 4425 @ 1200 km (completed by 2024)
- 7518 @ 340 km
- up to 1,000,000 fixed satellite earth stations & optical inter-satellite links
- 100 ÷ 500 kg satellites (mass production)
- 1700 satellites launched at 02/11/2021
- board a $10 \times 10 = 100 \text{ cm}^2$ effective area detector on each satellite
- 120 m² effective area All Sky Monitor!

- 900 @ 1200 km (648 initial phase)
- 150 kg satellites (mass production)
- 330 satellites launched at 02/11/2021
- board a $30 \times 30 = 900$ cm² effective area detector on each satellite
- 81 m² effective area All Sky Monitor

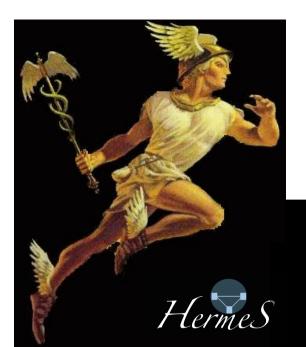
- 3200 @ 1200 km
- First 2 satellites launch in 2022
- board a $30 \times 30 = 900$ cm² effective area detector on each satellite
- 288 m² effective area All Sky Monitor

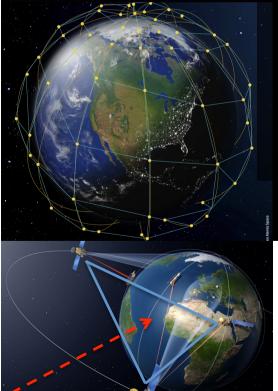
OneWeb Constellation 650 sats, Virgin Galactic (Richard Branson) Arianespace Airbus Defence and Space

Amazon's Kuiper System 3,236 sats Amazon & Blue Origin (Jeff Bezos)

GrailQuest

Gamma-Ray Astronomy International Laboratory for QUantum Exploration of Space-Time


AT~Gyr


Δt~µs

In a nutshell: Constellation of 100÷10000 small sats keV-MeV energy band Time resolution < 100 ns Collecting area ~100 m² Mass production Assembly line Costs reduction

Quantum Gravity Experiment Space-Time Granular structure $\ell_P \sim 10^{-33}$ cm Dispersion law for photons $v_{ph}/c \sim [1-\ell_P/\lambda_{ph}]$ X-ray/Gamma All-Sky Monitor Transients sub-arcsec localisation Gravitational-Waves EM counterparts

P.I. Luciano Burderi - University of Cagliari

The HERMES project: the movie

That's all Folks!

Please, visit our websites: http://hermes.dsf.unica.it www.hermes-sp.eu