

International Centre for Radio Astronomy Research Fast transient radio astronomy with the Square Kilometre Array: fast radio bursts and cosmic rays

Clancy W. James

ICRAR/Curtin

clancy.james@curtin.edu.au

High energy cosmic particles focus group

Government of Western Australia Department of the Premier and Cabinet Office of Science

Acknowledgement of country

I would like to pay my respects to:

- the Wadjuk people of the Nyungar Nation, the traditional owners of the land on which the Curtin Bentley Campus is located;
- the Wajarri Yamatji as the traditional owners of the Murchison Radio-astronomy Observatory site (MWA, ASKAP, SKA-low)

ABORIGINAL GROUPS OF THE SOUTH WEST OF WESTERN AUSTRALIA

Credit: John D. Croft

Credit: CSIRO

Fast transient radio astronomy

#1: Fast radio bursts

- Millisecond duration transients
- Extragalactic (by definition)
- Frequency sweep (dispersion)

$$DM = \int \frac{n(e)}{1+z} d\ell \text{ pc cm}^{-3}$$

- Progenitor(s) unknown
- Focus: SKA-mid

#2: Cosmic rays

- Relativistic particles from space
- Galactic and extragalactic

Nanosecond radio emission

Origin unknown
Focus: SKA-low

Key Players in FRB land

Parkes (Oz)

ICRAR

 Had 13 beam multibeam Single dish – no localisation

Image courtesy CSIRO Astronomy Space Sciences

CHIME (Canada)

- Huge field of view: >1 FRB/day!)
- Poor localisation
- (outriggers: => arcsecond accuracy)

Image courtesy Caltech

DSA 10 (USA)

- Small dishes (FOV)
- Good localisation (array)
- Upgrade: 1000 antennas

Westerbork (NL)

- Phased array feed (FOV)
- D baseline (OK loc.)

Image courtesy ASTRON

Key Players in FRB land

Credit: A. Dunning et al.

- High sensitivity
- Low FOV
- Excellent for localisation

Credit: NRAO

Credit: skatelescope.org

FAST

- Huge sensitivity
- Multibeam
- Poor localisation

Meerkat

- High sensitivity
- Discoveries paper in prep
- Fully commensal

Apologies to these collaborations

Sardinia too! Credit: Mike Peel

Credit: NAOC

CRAFT project

CRAFT: Commensal Real-time ASKAP Fast Transients survey

- 36 x 12m antennas, 30 deg² FOV
- 336 MHz bandwidth
- Mostly ~1.028-1.464 GHz

Stages

- 2016-2018: Fly's Eye mode (26 FRBs)
- 2018-2021: Incoherent sum (19 new FRBs)
- 2022- coherent upgrade (CRACO)
- Same telescope, improved detection modes
- Claim to fame: FRB localisation to host galaxies

Image courtesy CSIRO Astronomy Space Sciences

FRB images: Bannister et al., Prochaska et al, Macquart et al., Bhandari et al., Lachlan Marnoch, Xavier Prochaska, Stuart Ryder,

HG180924 (g-band)

25.2

HG190102 (g-band)

25.0^s

4.5 kp

5 kpc

Host galaxies: optical facilities critical!

40°53'58"

54'00'

02"

04"

-79°28'30"

32"

34"

36"

21h44m25.6s

25.4^s

kpc

arcse

3h33m59.4s 59.2° 59.0s 58.8 58.6 Right Ascension (J2000)

CRAR

Clancy W. James, SKA fast transients, Baracchi III, Nov 3rd-4th, 2021

43.0^s

21^h29^m41.0^s40.5^s

40.0^s

39.5°

39.0s 38.5°

FRB20191228A (I band)

HG181112 (g-band)

-52°58'13'

14'

000)

Host galaxies – initial trend

Clancy W. James, SKA fast transients, Baracchi III, Nov 3rd-4th, 2021

Host galaxies - mystery

Two nearby FRBs

- FRB 171020: does NOT repeat, high SFR
- FRB 20200120E repeats in a globular cluster (low SFR)

CHIME: A Nearby Repeating Fast Radio Burst in the Direction of M81

FRB 210407

Highest ASKAP DM: 1785.3 pc/cm3

- Optical data: no host galaxy found (must be distant z>1?)
- Need powerful telescopes to find z>1 hosts! (JWST? 30m class?)

FRB cosmology

$$DM = \int \frac{n(e)}{1+z} d\ell \text{ pc cm}^{-3}$$

Dispersion measure (DM) – ionised gas is everywhere

Science goals

- MW halo gas
- Cosmic baryon density, intervening halos, H0
- Host halo density
- FRB progenitor = ???

Other observables

- Scattering
- Faraday rotation
- Optical host galaxies

Host: z=0.4755 Foreground: z=0.3674 29 kpc offset

(b) FG181112_13_5 (VLT) 3020DEC Offset (kpc) -20-30Systematic Statistical -30-20-100 10 20 30 RA Offset (kpc)

J. X. Prochaska et al, Science 366, 231 (2019).

The Macquart relation!

• DM(z) consistent with total matter density of

$$\mathrm{DM}_{\mathrm{LSS}}(z) = \frac{3\Omega_{\mathrm{b}}H_0}{8\pi Gm_{\mathrm{p}}} \chi_{\mathrm{e}} f_{\mathrm{IGM}} \int_0^z \frac{1+z'}{E(z')} \mathrm{d}z' \; ,$$

If H0 correct

 Baryonic matter density as expected

What about H0?

- CMB, BBNS measures $\Omega_b h^2$
- Fix this, vary H0
- Account for observational biases!
- Ongoing work by Esan Mouli Ghosh

Sensitivity – ASKAP localisations

CRAR

C.W. James et al, arXiv:2101.08005 (2021)

What about the SKA?

- We need to build it to find out
- Don't rely on expectations!

FAST

- Sensitivity: ~SKA mid
- FRB 190520
- DM 1210.3 pc/cm³
- z: 0.241!

Science: burst sub-structure

Time-frequency structure

- Key to understanding emission mechanism
- Huge variation in observations!

Key SKA message

- Broad-bandwidth observations, high time resolution
- Need many FRBs to characterize population

Parkes: Kumar et al, MNRAS 500 (2020) 2525

Mawson Sammons

Testing dark matter clumpiness

- Limits on dark matter clumpiness: variety of sources
- FRBs probe a tiny fraction of line of sight. Might not pass through DM at all!
- Or... might we see lensed copes of an FRB signal?
- Volume probed by FRBs: 10²⁰ smaller than SN
- First constraints: Sammons et al, ApJ 900, 122 (2020). Expect < 1% lensed.

Cosmic rays

Cosmic ray mystery

- Energies: up to 10 Joules per particle!
- <10¹⁵ eV: Galactic in origin
- >10¹⁹ eV: extragalactic
- Where do they come from?
- Study physics at energies >LHC!

Sources?

Composition

- Relates to ability of cosmic ray sources to accelerate particles
- Expect hints of Galactic to extragalactic transition

Cosmic ray extensive air showers

Radio emission

- Charged particles in cascade: e⁺, e⁻
- Accelerated charged particles radiate
- Emit short burst of radio waves (tens of ns)
- Localised ground pattern contains information on primary particle
- Emission peaks near 50 MHz

600 pulse maximum Signal Envelope 150 40 RMS 500 100 20 400 strength [µV/m] Amplitude (ADU) 50 300 0 P. Schellert -50 -20 200 et al, A&A -100 560, A98 -40 100 (2013)-150 -60L 2.0 -200 0.5 1.5 1.0 Time (us) 150 200 -200 -150 -100 -50 50 100 east position [m] T. Huege, Phys Rep 620 (2016) 1

What information?

Main observable: "X_{max}"

- X_{max}: depth in atmosphere (g/cm2) of shower peak
- Depends on:
- Primary particle energy/type (proton, iron, gamma)
- High-energy particle cross-section
- Random fluctuations
- Compare measurements (LOFAR) with simulations
- Study composition and HE physics

S. Thoudam et al, NIMPA 767, 339 (2014)

Composition

Relates to ability of cosmic ray sources to accelerate particles Expect hints of Galactic to extragalactic transition

Comparisons

SKA1-low:

- Very dense
- Moderate area
- Ultimate precision 1 km

Clancy W. James, SKA fast transients, Baracchi III, Nov 3rd-4th, 2021

Plans for the SKA-low

Step 1: buffer antenna data

- Before broken into frequency channels
- Before added into station beams
- 1 in 4 antennas buffered (tile processing model)
- 12 bits buffered for ~1 second

P. Bentham et al, IAU 2017

Step 2: trigger on particle detectors

- 180 detectors planned
- Distribute over SKA-low core (~1 km²)
- Piggyback off SKA power/fibre distribution
- Scintillators detect particles, trigger radio data

Step 3: return data

- Only 10 us per event! (x65000 tiles...): few GB
- Trigger rate: O~1/minute (<0.00001 % of data)
- Perform analysis offline in dedicated pipeline

Estimated sensitivity

Reconstruction accuracy

- Based on LOFAR pipeline
- Simple models of SKA (outdated layout)
- Use only ¼ antennas (saves time)
- X_{max} resolution: 6.3 g cm⁻² for 10¹⁷ eV p
- c.f. LOFAR 17 g cm⁻², Auger 20 g cm⁻²
- "Ultimate precision"!

How can we improve?

Testing – Murchison Widefield Array

Status

- 8 detectors funded
- Prototypes tested:
 - In-field
 - KIT 'muon tower'
- Performance matches!

First look

- No triggers
- Record all data!
- Search for pulses

Tile 85 Tile 95Tile 28Tile 23Tile 47Tile 22Tile 14Tile 38SKAPA	HexE01
Tile 11 Tile 13 Tile 17 Tile 62 Tile 61	HexE15 HexE33 HexE27
Tile 71 Tile 18 Tile 68 SKAPA_6 Tile 31 HexS13 He Tile 58 HexS07	SKAPA_8 Tile 92 ExS08 HexS21 HexS15
Tile 53 H	exS31 SKAPA field cabinet
FPF and CFNDH Telstra RF Hut / pick up point Trile 56 MWA Fibre aggregation polint Telstra RF Hut - +	

Cosmic ray

amplitude (σ) $_{\sf amplitude}$ (σ) $_{\sf amplitude}$ (σ) $_{\sf amplitude}$ (σ)

Best event in 23 hr

- 16 tiles
- E-W > N-S polarisation
- Arrives from main beam
- Perpendicular to local B-field (max Lorentz force)
 Channelisation artefacts!

Conclusion

FRB Science

- High-energy astrophysics (pulsars, GW, ...)
- Cosmology (H0, feedback,...)
- Require large sample of precision-localised FRBs
- Needs world-class optical facilities
- Modelling of detection biases critical (know your instrument!)

Cosmic ray science

- Strong synergies with CTA, KM3NeT
- Particle physics how to model high-energy interactions?
- Cosmic ray origins: Galactic => extragalactic transition?

Transient radio astronomy

- All of this made possible via non-standard processing
- Buffer-search-trigger-dump paradigm
 - FRBs: station-level data
 - Cosmic rays: antenna-level data
- Close cooperation between scientists and engineers required

Thank you Italy!

