CNO isotopes evolution with HRMOS

Donatella Romano

Osservatorio di Astrofisica e Scienza dello Spazio di Bologna

Why and where to measure CNO isotope abundances - a GCE modeler point of view

${f 1}$ Test stellar evolution and nucleosynthesis theory (stellar yields)

- ***** Nuclear reaction rates, (extra) mixing processes, mass loss strength...
- **#** Rotating vs non-rotating stellar models
- **#** Thermonuclear runaways in nova outbursts

2 Test galaxy-wide stellar IMF (gwIMF)

- ***** Top-heavy IMF in massive (high-redshift) starbursts?
- **#** Less CC SNe in (some) low-mass galaxies?

3 Constrain galaxy formation and evolution models

- **#** Reproduce trends of abundances and abundance ratios with time/age
- **ж** Reproduce galactic gradients

Seven stable CNO isotopes

- Gas phase: abundances from molecular clouds and Hll regions
 - Probe low and high redshifts
 - Instantaneous picture
- Stars: secondary isotopes very difficult to measure...
 - Full evolutionary history (in principle)
 - Sample a limited volume

Seven little rabbits Walkin' down the road Walkin' down the road

> Seven little rabbits Walkin' down the road To call on old friend toad.

HRMOS Science Workshop

Arcetri, Italy, 19 Oct 2021

Seven stable CNO isotopes

- Gas phase: abundances from molecular clouds and Hll regions
 - Probe low and high redshifts
 - Instantaneous picture
- **Stars:** secondary isotopes very difficult to measure...
 - Full evolutionary history (in principle)
 - Sample a limited volume

Seven little rabbits Walkin' down the road Walkin' down the road

> Seven little rabbits Walkin' down the road To call on old friend toad.

HRMOS Science Workshop

Arcetri, Italy, 19 Oct 2021

¹³C/¹⁸O: a sensitive tracer of stellar IMF

- Standard nucleosynthesis:
 - ¹³C produced mostly in low- and intermediate-mass stars
 - ¹⁸O produced mostly in massive stars
 - (Henkel & Mauersberger 1993; Romano+ 2017, and refs therein)
- \mathfrak{R}

¹³C/¹⁸O ~ 1 in a sample of four SMGs observed with ALMA implies a stellar IMF biased towards massive stars (Zhang, DR+ 2018)

Figure from Zhang, DR+ (2018)

Primary ¹⁴N from low-Z massive stars

- Primary ¹⁴N production in massive stars hypothesised long ago (Truran & Cameron 1971; Talbot & Arnett 1974)
- Explain observations of (N/O) in metal-poor Galactic dwarf stars and in ionized Hll regions in our own and other galaxies (Sneden 1974; Smith 1975; Edmunds & Pagel 1978; Peimbert et al. 1978 + many others)
- Rotation trigger primary ¹⁴N production (Meynet & Maeder 2002)

Data: Spite+ (2006); Israelian+ (2004); Roederer+ (2014); Suárez-Andrés+ (2016); Spite+ (2021); Botelho+ (2020)

Models: Romano+ (2019) updated (work in progress...)

Primary ¹³C from low-Z massive stars

- If rotation is at work, efficient primary ¹³C production expected at low metallicities (Chiappini+ 2006)
- As a consequence, the ¹²C/¹³C gradient reverse in the outer Galaxy (Romano+ 2017)
- One data point at large Galactocentric distances!
- Can add stellar data? (HRMOS?)

Data: Wilson & Rood (1994); Boogert+ (2000); Savage+ (2002); Milam+ (2005) Green lines: GCE models without fast rotators Black/grey lines: GCE models including fast rotators

Arcetri, Italy, 19 Oct 2021

Primary ¹³C from low-Z massive stars

Recent, precise ¹²C/¹³C measurements in dwarf stars

 \mathfrak{R}

Data: Spite+ (2021); Crossfield+ (2019); Botelho+ (2020); Zhang+ (2021) Models: Romano+ (2019) updated (work in progress...)

HRMOS Science Workshop

Arcetri, Italy, 19 Oct 2021

Can HRMOS help me/us?

Work	Sample	Instrumentation	Resolution	Spectral feature(s)	Notes
Crossfield+ (2019)	2 M dwarfs	iSHELL@IRTF	70,000	CO fundamental bandheads at 5 μ	Also measure ¹⁶ O/ ¹⁸ O for same stars
Botelho+ (2020)	63 solar twins	HARPS@ESO3.6m	115,000	CH A-X, CN B-X molecular electronic systems in the blue (4170-4400Å)	S/N≃8oo@6oooÅ (staked spectra)
Spite+ (2021)	1 old, metal- poor dwarf	ESPaDOnS@CFHT ESPRESSO@VLT HARPS@ESO3.6m	81,000 140,000 120,000	CH A-X, B-X and C-X transitions	S/N=1500@4200Å S/N=700@4200Å S/N=300@4200Å
Zhang+ (2021)	1 brown dwarf	NIRSPEC@Keck	27,500	K-band (2.03-2.38µ)	

In the future: HIRES@ELT (R~100,000 S/N>100) for INDIVIDUAL STARS

Can HRMOS help me/us?

Work	Sample	Instrumentation	Resolution	Spectral feature(s)	Notes
Crossfield+ (2019)	2 M dwarfs	iSHELL@IRTF	70,000	CO fundamental bandheads at 5 μ	Also measure ¹⁶ O/ ¹⁸ O for same stars
Botelho+ (2020)	63 solar twins	HARPS@ESO3.6m	115,000	CH A-X, CN B-X molecular electronic systems in the blue (4170-4400Å)	S/N≃8oo@6oooÅ (staked spectra)
Spite+ (2021)	1 old, metal- poor dwarf	ESPaDOnS@CFHT ESPRESSO@VLT HARPS@ESO3.6m	81,000 140,000 120,000	CH A-X, B-X and C-X transitions	S/N=1500@4200Å S/N=700@4200Å S/N=300@4200Å
Zhang+ (2021)	1 brown dwarf	NIRSPEC@Keck	27,500	K-band (2.03-2.38µ)	

In the future: HIRES@ELT (R~100,000 S/N>100) for INDIVIDUAL STARS

In a few years: ${}^{12}C/{}^{13}C$ in a significant sample of OC stars (?)