HRMOS Science Workshop

A new tool for chemical tagging based on iron-peak elements

Alice Minelli (UniBo)

Collaborators: A. Mucciarelli (UniBo), D. Massari (INAF), M. Bellazzini (INAF), D. Romano (INAF), R.F. Ferraro (UniBo)

Outline

Homogeneous comparison between LMC – Sgr – MW <u>New diagnostics</u> Application: identification of accreted stars

Alice Minelli

HRMOS Science Workshop

Closest Milky Way satellites

NO isolated systems

LMC

Gravitational interaction with MW Early stage of a minor merger with SMC

Sgr Disrupted by MW tidal field

Alice Minelli

HRMOS Science Workshop

Scientific goal

Homogeneous comparison between LMC-Sgr-MW for the main groups of elements UVES-FLAMES@VLT spectra (R ~ 45000, λ = 4800-6800 Å) of RGB stars

Abundance ratios for ~20 species (α , light, iron peak, neutron capture elements)

Alice Minelli

HRMOS Science Workshop

Scientific goal

Alice Minelli

LMC vs Sgr

Results

Alice Minelli

HRMOS Science Workshop

Results

Results

Results

Minelli et al. 2021a

Alice Minelli

HRMOS Science Workshop

Results

Minelli et al. 2021a

HRMOS Science Workshop

Results

Minelli et al. 2021a

Sc, V, Zn ---> NEW DIAGNOSTICS to distinguish metal-rich stars formed outside the MW

Alice Minelli

HRMOS Science Workshop

Check the origin of **MW** clusters

Accreted or in-situ origin of the GCs can be assess using their dynamical properties.

But sometimes do not allow a clear-cut classification.

Alice Minelli

HRMOS Science Workshop

MW GCs

NGC 5927 [Fe/H] = -0.46 ± 0.03 dex M = $2.75 \pm 0.02 \times 10^{5} M_{\odot}^{-1}$

NGC 6388 [Fe/H] = $-0.49 \pm 0.02 \text{ dex}$ M = $1.25 \pm 0.01 \times 10^{6} \text{ M}_{\odot}^{-1}$

NGC 6496 [Fe/H] = -0.64 ± 0.03 dex M = $6.89 \pm 0.73 \times 10^4$ M_o⁻¹

¹ Baumgardt 2017; Baumgardt & Hilker 2018

NGC 6441 [Fe/H] = -0.54 ± 0.08 dex M = $1.32 \pm 0.01 \times 10^{6}$ M_o¹

Alice Minelli

HRMOS Science Workshop

MW GCs

NGC 5927 [Fe/H] = -0.46 ± 0.03 dex M = $2.75 \pm 0.02 \times 10^5 M_{\odot}^{-1}$

IN SITU GCs²

NGC 6388

 $[Fe/H] = -0.49 \pm 0.02 \text{ dex}$ $M = 1.25 \pm 0.01 \times 10^{6} \text{ M}_{\odot}^{-1}$

NGC 6496 [Fe/H] = -0.64 ± 0.03 dex M = $6.89 \pm 0.73 \times 10^4$ M_o¹

¹ Baumgardt 2017; Baumgardt & Hilker 2018

NGC 6441 [Fe/H] = $-0.54 \pm 0.08 \text{ dex}$ M = $1.32 \pm 0.01 \times 10^{6} \text{ M}_{\odot}^{-1}$

² (Massari et al. 2019)

Alice Minelli

HRMOS Science Workshop

MW GCs

 NGC 5927
 NGC 6496
 NGC 6388
 NGC 6441

UVES-FLAMES@VLT spectra (R ~ 45000, λ = 4800-6800 Å) RGB stars

Abundance ratios for α, iron peak & neutron capture elements

Alice Minelli

HRMOS Science Workshop

Alice Minelli

HRMOS Science Workshop

Alice Minelli

HRMOS Science Workshop

Alice Minelli

HRMOS Science Workshop

Alice Minelli

HRMOS Science Workshop

Take home message

Chemical tagging is a powerful tool to disentagle between the origin of astronomical object

Sc, V and Zn are ideal diagnostics to identify stars formed in galaxies with a low star formation efficiency, especially in metal-rich regime (but also for metal-poor stars, see Mucciarelli et al. 2021, Nature Astronomy)

Minelli et al. 2021b

Alice Minelli

HRMOS Science Workshop

Take home message

Chemical tagging is a powerful tool to disentagle between the origin of astronomical object

Sc, V and Zn are ideal diagnostics to identify stars formed in galaxies with a low star formation efficiency, especially in metal-rich regime (but also for metal-poor stars, see Mucciarelli et al. 2021, Nature Astronomy)

Minelli et al. 2021b

Alice Minelli

HRMOS Science Workshop

Science case for HRMOS

Identification of accreted stars

Fe-peak elements abundances are needed Main optical lines: Sc: 5318 Å - 5526 Å - 5641 Å - 5657 Å - 5667 Å - 5684 Å - 6279 Å V: 5670 Å - 5727 Å - 6150 Å - 6224 Å - 6285 Å - 6292 Å Zn: 4810 Å

Top level requirements for HRMOS: define the spectral coverage in order to include also these lines

Alice Minelli

HRMOS Science Workshop