PROBING THE ORIGIN OF **GLOBULAR CLUSTERS AND** THEIR MULTIPLE POPULATIONS THE KEY ROLE OF HRMOS

HRMOS SCIENCE WORKSHOP (18° - 22° OCTOBER 2021-FIRENZE/SYDNEY)

WHAT WE KNOW

Virtually *ALL* Galactic GCs and massive clusters in LMC/Fornax exhibit multiple populations

& new works on MC clusters)

WHAT WE KNOW

ligh-element variations (positive and negative correlations) including He,C,N,O,Na,Mg,Al

-(plus Li, in several cases Si,Ca,Sc,K)

WARNING: Several cases of iron-peak and heavy element abundance variations, Typel vs Typell GCs (see seminal papers by A. Milone and collaboratos + C. Johnson) + cf Anna Marino's talk in this workshop

WHAT WE KNOW

Signature of the activation of hot H burning via CNO

Gratton+ 2019, originally adapted from Salaris+ 2002

WHAT WE DO NOT KNOW

Does «multiple populations» mean multiple stellar generations ? →YES (Decressin+ 2007, D'Ercole+ 2008, Krause+ 2013) «cooling flow» \rightarrow NO (De Mink+ 2009, Bastian+ 2013, Gieles+ 2018) accretion on first-generation stars

The Occam's razor + previous evidence

A fraction of first-generation (FG) stars have activated CNO,NeNa,MgAI cycles and provided polluted material from which the SG formed (but see Bastian+ 2015, 2018 for a different view)

At first approximation we think of:

- First-generation stars: C-rich, O-rich, N-poor, Na-poor [Mg-rich/Al-poor]
- Second generation stars: C-poor, O-poor, N-rich, Na-rich [Mg-poor~ish/Al-rich]

WHAT WE DO NOT KNOW

- Different clusters have different correlations (elements involved, shape and extent of abundance variations):
- relationship with global cluster parameters such as e.g., mass, metallicity, HB morphology and/or location in the Galaxy (environment!)
- What about the binary fraction and the formation scenarios?

Consensus on a more concentrated second generation of stars (Lardo+ 2011, D'Alessandro+ 2019, Milone et al 2020, Sollima+ 2021 in prep)

WHAT WE DO NOT KNOW

What is the stellar source of internal pollution* ?

Fast rotating massive stars (Decressin+ 2007)
Intermediate-mass AGB stars (Ventura+ 2001)

- Massive binaries (de Mink+ 2009)
- Super massive stars (Denissenkov & Hartwick 2013; Gieles+ 2018)

*Note that the hardest thing is not to reproduce Na, Al production but O/Mg depletion !

03/11

LITHIUM

It is expected that at CNO/NeNa cycle temperatures occur NO Li is left (Li burns at T~ 2.5 MK)

 \rightarrow Polluting material (ejected from the first generation stars) has Li ~ 0

(under the assumption that there is NO Li production within the polluters)

Na-poor, O-rich stars (FG stars) should be (they actually are) Li-rich

Na-rich, O-poor stars (SG stars) should be Li poor

Lithium and sodium ANTI-CORRELATED lithium and oxygen correlated

While Massive Stars can only destroy Li, the IM-AGB stars can also produce it via THE CAMERON-FOWLER MECHANISM ("⁷Be transport" mechanism, Cameron & Fowler 1971)

[Any production of Lithium tends to erase the Li–O(Na) (anti–)correlation]

03/11/

LITHIUM ABUNDANCES IN GC STARS* (AND CONNECTION TO THE MP SCENARIO)

- □ M92 (Bonifacio+ 2002, some scatter but no Na/O available)
- □ NGC 6752 (Pasquini+ 2005; Shen+ 2010; Gruyters+ 2014)
- □ NGC 6397 (Lind+ 2009)
- □ 47 Tuc (Bonifacio+ 2007; D'Orazi+ 2010; Dobrovolskas+ 2014)
- NGC 6121 (D'Orazi & Marino 2010; Mucciarelli+ 2011, Monaco+ 2012, Spite+ 2016)
- □ NGC 5904, NGC 6218 (D'Orazi+ 2014)
- □ NGC 1904, NGC 2808, NGC 362 (D'Orazi+ 2015a,b)
- □ NGC 7099 (Gruyters+ 2016)
- Omega Centauri (Mucciarelli+ 2018)
- NGC 4590, NGC6809, NGC6656, NGC 3201, NGC 6838 (Aguilera-Gómez+ 2021)

—17 GCs in total**

*MS and RGB stars below the bump) :

**(NGC 1261 from Gaia-ESO –Sanna, 2920) 03/11/21

LITHIUM ABUNDANCES IN GC STARS* (AND CONNECTION TO THE MP SCENARIO)

GES: n1261 n6553 n7089 n4833 n1851 n4372 n5927 ... new GC cf N. Sanna in "<u>Star Clusters: the Gaia Revolution</u> (5-7 October) 2021 <u>https://zenodo.org/record/5554008 - .YWLA6EYzaIY</u>

In GCs like M4, M12, NGC 362, NGC 6809, NGC 3201, NGC 6656 NGC 6838: FG and SG share the same Lithium → Li production across different stellar generations is unavoidable. But there are also complex behaviours..

NGC 2808 (D'Orazi+ 2015, Gratton+ 2019)

Omega Cen (Mucciarelli+ 2018)

Table 2 Fraction of stars with extreme composition along the [Na/O] anticorrelation (E-stars: Carretta et al. 2009c) and of Li-poor stars in various clusters

Cluster	[Fe/H]	$\log M_{rmin}$	Туре	E-Fraction	Ref	Li-poor	Ref
NGC 362	-1.26	6.06	2	0.03 ± 0.02	3	0.04 ± 0.03	7
NGC 1904	-1.60	6.08		0.10 ± 0.04	1	0.14 ± 0.08	7
NGC 2808	-1.14	6.36	1	0.14 ± 0.03	9	0.14 ± 0.05	7
NGC 5904	-1.29	5.96	1	0.07 ± 0.02	1	0.074 ± 0.030	6
NGC 6121	-1.16	6.03	1	0.00 ± 0.01	1	0.00 ± 0.26	8
NGC 6218	-1.37	5.63	1	0.03 ± 0.02	1	0.00 ± 0.02	6
NGC 6397	-2.02	5.60	1	0.00 ± 0.01	1	0.020 ± 0.008	4
NGC 6752	-1.54	5.83	1	0.40 ± 0.06	2	0.30 ± 0.05	5
NGC 7099	-2.27	5.79	1	0.03 ± 0.02	2	0.11 ± 0.08	10

References: 1. Carretta et al. (2010c); 2. Carretta et al. (2012); 3. Carretta et al. (2013a); 4. Lind et al. (2009); 5. Shen et al. (2010); 6. D'Orazi et al. (2014); 7. D'Orazi et al. (2015); 8. D'Orazi and Marino (2010); 9.Carretta (2015); 10 Gruyters et al. (2016)

- 1. The more massive the cluster, the larger the Li variation \rightarrow Li production is more efficient in low-mass GCs
- 2. Metallicity plays a role (NGC 362 vs NGC 1904)
- 3. Anti-correlation between dilution factor Na/O for I stars and the fraction of Li-poor stars → the larger is the fraction of Li-poor stars, the lower is the dilution of the Intermediate population (so these two populations are not independent)

Strong correlation between the fraction of E stars (according to Na/O, Carretta's definition) and the fraction of Li poor stars

N-CAPTURE ELEMENTS

In general GCs are homogeneous as far as n-capture elements are concerned (Armosky+ 1994, James et al. 2004, D'Orazi+ 2010) although anomalous Type II clusters (e.g., NGC 1851, M22, Omega Cen) exhibit internal variations (Marino+ 2009, 2011, 2015, 2017, this workshop)

M4 primordially enriched in n-capture (Ivans+ 1999)

N-CAPTURE ELEMENTS

- Large observational uncertainties affecting Ba II lines (e.g., D'Orazi+ 2010, 1200 stars but errors of ~0.25 dex, Carretta+ 2011)
- Lanthanum is proven to be a better tracer of the s-process than Ba but higher resolution than FLAMES is required (and bluer coverage !) some work by e.g., Yong and collaborators
- No information on third-peak s-process elements (only the main component can produce Pb)
- Rubidium is a key diagnostics (high resolution and red spectral coverage)

RUBIDIUM

Some preliminary works by Yong et al. 2006, 2007, D'Orazi+ 2013 but very limited samples

Due to a critical branching point in the s-process path at [®]Kr, the abundance of Rb relative to Sr, Y, or Zr can differ by a factor of 10 depending upon the neutron density at the s-process site.

In the standard picture, two neutron sources are present in the He-rich shell of AGB stars (Gallino et al. 1998).

The ¹³C(α ,n)¹⁶O reaction is activated in low-mass (< 4 M_{\odot}) AGB stars in radiative conditions and produces low neutron densities (~10⁸ n/cm3), resulting in negative [Rb/Sr] and [Rb/Zr] ratios.

The ²²Ne(α ,n)²⁵Mg reaction is activated in the convective thermal pulses of IM-AGB stars and produces high neutron densities (up to ~10¹³ n/cm3) \rightarrow positive [Rb/Sr] and [Rb/Zr] ratios.

03/11/2

The picture is more complicated than that ..

THEORETICAL PREDICTIONS

«Some contend that IM-AGBs also synthesize s-process nuclides and then one might expect to see starto-star variations in the Rb and Pb abundances as well as correlations with light element abundances» (Yong+ 2007)

Pb 6 Msun STD Z = 0.001 $_0[<\!X(i)\!>\!/X_{ini}(i)$ —<u>+</u> 8.5 M_☉ Z=0.02 – **▲**– 8.0 M_☉ Z=0.008 0.8 [X/Fe] 7.5 M_o[°] Z=0.004 7.0 M Z=0.001 0.6 [X/Fe] 16O 13C 7Li ^{15}N 170 19F 21Ne 0.4 $\left[\left(i \right) \right]_{ini}$ 6 Msun MLT+BLK 2 0.2 <X(i)>, [X/Fe] 30 40 50 60 70 80 Atomic Number Z 0.0 Doherty+ 2014,2015, 2017 15 -5 0 10 Time $(yr/10^4)$

Massive AGB models for heavy elements

D'Orazi et al. 2013 (AGB stars modeled «a la Monash» vs Ventura's group –no heavy!)

03/11/2

PAST/CURRENT SURVEYS

- NO SIMULTANEOUS determination of Li and heavy-element abundances
- NO Pb & Rb measurements for significant samples.

GAIA-ESO (R = 20 000 / 48 000) Li I line included but not blue spectral coverage for best lines of n-capture elements, no Pb, Rb..

APOGEE (R = 22500) H band No Lithium and no n-capture elements

GALAH+ (R= 28 000) Lithium and several n-capture (including Rb but no Pb) but limited resolution + not blue spectral coverage (bright targets, a few GCs)

NEXT-COMING SURVEYS

WEAVE : R=20000 max, but will have Li and several n-capture elements but R not enough for Pb, La, and Rb

MOONS : no Li, low resolution (except in H, same problem as APOGEE)

4MOST : same as WEAVE in resolution & WL coverage

Under construction (telescope, instrument, survey) MSE = Maunakea Spectroscopic Explorer will have (maybe) higher resolution R=30000, 40000 under discussion WL coverage under discussion WEAVE has ~1000 fibers (plus 20 mIFUs, 1 IIFU) @WHT, FoV 2 deg ∅ R~5000: 366-959 nm R~20000: in 2 (of 3) WL regions

MOONS has ~1000 fibers @VLT, FoV 25 arcmin Ø R~5000: 0.6-1.8 μ R~9000: at CaT R~20000: in H band

4MOST has ~2400 fibers (1600 LR, 800 HR at same time) @VISTA, FoV 4 sq.deg R~5000 + R~20000

THE UNIQUENESS OF HRMOS

1. SPECTRAL COVERAGE (blue coverage < 4200 Å and Li at 6708 Å + possibly Rb at 7800 (and C isotopes at 8000?)

2. VERY HIGH RESOLUTION ($R > 50\ 000$)

3. MULTIPLEXING CAPABILITIES (50+)

SCIENCE CASES & SIMULATIONS (BLUE)

At $R = 40\ 000$ severe blending with Mn I line at 4057.9

Resolving power R	SNR per resol.	σ(EW) in mÅ	Δ ([Pb/H]) in dex	
	element			
40,000	100 (58 per pixel)	8.0	± 0.20	
40,000	300 (173 per pixel)	4.4	± 0.10	
60,000	100 (58 per pixel)	5.6	± 0.13	
60,000	300 (173 per pixel)	3.2	± 0.07	

SCIENCE CASES & SIMULATIONS (BLUE)

SNR per resol.	σ(EW) in mÅ	Δ ([Pb/H]) in dex	
element			
100 (58 per pixel)	8.0	± 0.20	
300 (173 per pixel)	4.4	± 0.10	
100 (58 per pixel)	5.6	± 0.13	
60,000 300 (173 per pixel)		± 0.07	
	element 100 (58 per pixel) 300 (173 per pixel) 100 (58 per pixel)	element100 (58 per pixel)300 (173 per pixel)4.4100 (58 per pixel)5.6	

03/11/21

Yong+ (2014)

