PROBING THE ORIGIN OF GLOBULAR CLUSTERS AND THEIR MULTIPLE POPULATIONS

THE KEY ROLE OF HRMOS

VALENTINA D'ORAZI (INAF OA Padova) EUGENIO CARRETTA, ANGELA BRAGAGLIA (INAF OAS Bologna)

WHAT WE KNOW

Virtually *ALL* Galactic GCs and massive clusters in LMC/Fornax exhibit multiple populations

(see reviews by Bastian and Lardo 2018, Gratton et al. 2019 \& new works on MC clusters)

WHAT WE KNOW
 ligh-element variations (positive and negative correlations) including $\mathrm{He}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$ -(plus Li, in several cases Si, Ca,Sc,K)

WARNING: Several cases of iron-peak and heavy element abundance variations, Typel vs Typell GCs (see seminal papers by A. Milone and collaboratos + C. Johnson)

+ cf Anna Marino's talk in this workshop

WHAT WE KNOW

Signature of the activation of hot H burning via CNO

10 MK
40 MK
70 MK

$\gamma)$
$\mathrm{Mg}_{(\mathrm{p}, \alpha)}$

80-180 MK

Burning Temperature

WHAT WE DO NOT KNOW

- Does «multiple populations» mean multiple stellar generations ?
\rightarrow YES (Decressin+ 2007, D'Ercole+ 2008, Krause+ 2013) «cooling flow»
\rightarrow NO (De Mink+ 2009, Bastian+ 2013, Gieles+ 2018) accretion on first-generation stars

The Occam's razor + previous evidence

A fraction of first-generation (FG)
stars have activated CNO,NeNa,MgAl cycles and provided polluted material from which the SG formed (but see Bastion+ 2015, 2018 for a different view)

At first approximation we think of:

- First-generation stars: C-rich, O-rich, N-poor, Na-poor [Mg-rich/Al-poor]
- Second generation stars: C-poor, O-poor, N-rich, Na-rich [Mg-poor~ish/Al-rich]

WHAT WE DO NOT KNOW

- Different clusters have different correlations (elements involved, shape and extent of abundance variations):
\rightarrow relationship with global cluster parameters such as e.g., mass, metallicity, HB morphology and/or location in the Galaxy (environment!)
- What about the binary fraction and the formation scenarios?
\rightarrow Consensus on a more concentrated second generation of stars_(Lardo+ 2011, D’Alessandro+ 2019, Milone et al 2020, Sollima+ 2021 in prep)

WHAT WE DO NOT KNOW

What is the stellar source of internal pollution*?

- Fast rotating massive stars (Decressin+ 2007)
- Intermediate-mass AGB stars (Ventura+ 2001)
- Massive binaries (de Mink+ 2009)

- Super massive stars (Denissenkov \& Hartwick 2013; Gieles+ 2018)
*Note that the hardest thing is not to reproduce Na, Al production but O / Mg depletion !

LITHIUM

It is expected that at CNO/NeNa cycle temperatures occur NO Li is left (Li burns at T~2.5 MK)
\rightarrow Polluting material (ejected from the first generation stars) has Li~0
(under the assumption that there is NO Li production within the polluters)

Na-poor, O-rich stars (FG stars) should be (they actually are) Li-rich

Na-rich, O-poor stars (SG stars) should be Li poor
$[\mathrm{Na} / \mathrm{Fe}]$

Lithium and sodium ANTI-CORRELATED lithium and oxygen correlated

> While Massive Stars can only destroy Li, the IM-AGB stars can also produce it via THE CAMERON-FOWLER MECHANISM ("7Be transport" mechanism, Cameron \& Fowler 1971) Li-O(Na) (anti-)correlation]

LITHIUM ABUNDANCES IN GC STARS* (AND CONNECTION TO THE MP SCENARIO)

- M92 (Bonifacio+ 2002, some scatter but no Na/O available)
- NGC 6752 (Pasquini+ 2005; Shen+ 2010; Gruyters+ 2014)
- NGC 6397 (Lind+ 2009)
- 47 Tuc (Bonifacio+ 2007; D’Orazi+ 2010; Dobrovolskas+ 2014)
- NGC 6121 (D'Orazi \& Marino 2010; Mucciarelli+ 2011, Monaco+ 2012, Spite+ 2016)
- NGC 5904, NGC 6218 (D'Orazi+ 2014)
- NGC 1904, NGC 2808, NGC 362 (D'Orazi+ 2015a,b)
- NGC 7099 (Gruyters+ 2016)
- Omega Centauri (Mucciarelli +2018)
- NGC 4590, NGC6809, NGC6656, NGC 3201, NGC 6838 (Aguilera-Gómez+ 2021)

17 GCs in total*

*MS and RGB stars below the bump) :

**(NGC 1261 from Gaia-ESO -Sannat-2820)

LITHIUM ABUNDANCES IN GC STARS* (AND CONNECTION TO THE MP SCENARIO)

GES: n1261 n6553 n7089 n4833 n1851 n4372 n5927 ... new GC
cf N. Sanna in "Star Clusters: the Gaia Revolution (5-7 October) 2021
https://zenodo.org/record/5554008-.YWLA6EYzalY

GCs in iDR6 GES

As calibrators GCs have been observed/analysed (Pancino+2017): giant stars 15 GCs + dwarf stars for 2

M12	NGC 104*	NGC 1851	NGC 4372	NGC 5927
M15	NGC 362	NGC 1904	NGC 4590	NGC 6553
M2	NGC 1261	NGC 2808	NGC 4833	NGC 6752*

Abundances homogenously analysed, including Li

Li in GCs with GES

Li analysis described in Franciosini+ in prep.

GES gives us the possibility to explore Li for ~1200 stars in a very large sample of GCs.

In GCs like M4, M12, NGC 362, NGC 6809, NGC 3201, NGC 6656 NGC 6838: FG and SG share the same Lithium \rightarrow
Li production across different stellar generations is unavoidable.
But there are also complex behaviours..

NGC 2808 (D’Orazi+ 2015, Gratton+ 2019)

Omega Cen (Mucciarelli+ 2018)

Table 2 Fraction of stars with extreme composition along the [Na / O] anticorrelation (E-stars: Carretta
et al. 2009c) and of Li-poor stars in various clusters

Cluster	$[\mathrm{Fe} / \mathrm{H}]$	$\log M_{\text {rmin }}$	Type	E-Fraction	Ref	Li-poor	Ref
NGC 362	-1.26	6.06	2	0.03 ± 0.02	3	0.04 ± 0.03	7
NGC 1904	-1.60	6.08		0.10 ± 0.04	1	0.14 ± 0.08	7
NGC 2808	-1.14	6.36	1	0.14 ± 0.03	9	0.14 ± 0.05	7
NGC 5904	-1.29	5.96	1	0.07 ± 0.02	1	0.074 ± 0.030	6
NGC 6121	-1.16	6.03	1	0.00 ± 0.01	1	0.00 ± 0.26	8
NGC 6218	-1.37	5.63	1	0.03 ± 0.02	1	0.00 ± 0.02	6
NGC 6397	-2.02	5.60	1	0.00 ± 0.01	1	0.020 ± 0.008	4
NGC 6752	-1.54	5.83	1	0.40 ± 0.06	2	0.30 ± 0.05	5
NGC 7099	-2.27	5.79	1	0.03 ± 0.02	2	0.11 ± 0.08	10

Strong correlation between the fraction of E stars (according to Na/O, Carretta's definition) and the fraction of Li poor stars

References: 1. Carretta et al. (2010c); 2. Carretta et al. (2012); 3. Carretta et al. (2013a); 4. Lind et al. (2009); 5. Shen et al. (2010); 6. D'Orazi et al. (2014); 7. D'Orazi et al. (2015); 8. D'Orazi and Marino (2010); 9.Carretta (2015); 10 Gruyters et al. (2016)

1. The more massive the cluster, the larger the Li variation $\rightarrow L i$ production is more efficient in low-mass GCs
2. Metallicity plays a role (NGC 362 vs NGC 1904)
3. Anti-correlation between dilution factor Na / O for I stars and the fraction of Li-poor stars \rightarrow the larger is the fraction of Li poor stars, the lower is the dilution of the Intermediate population (so these two populations are not independent)

N-CAPTURE ELEMENTS

In general GCs are homogeneous as far as n-capture elements are concerned (Armosky+ 1994, James et al. 2004, D’Orazi+ 2010) although anomalous Type Il clusters (e.g., NGC 1851, M22, Omega Cen) exhibit internal variations (Marino+ 2009, 2011, 2015, 2017, this workshop)

Exotic case: M15 Variation of Ba and Eu (Sneden+ 1997, Worley+ 2013)

M4 primordially enriched in n-capture (Ivans+ 1999)

N-CAPTURE ELEMENTS

- Large observational uncertainties affecting Ba II lines (e.g., D'Orazi+ 2010, 1200 stars but errors of ~ 0.25 dex, Carretta+ 2011)
- Lanthanum is proven to be a better tracer of the s-process than Ba but higher resolution than FLAMES is required (and bluer coverage !) some work by e.g., Yong and collaborators
- No information on third-peak s-process elements (only the main component can produce Pb)
- Rubidium is a key diagnostics (high resolution and red Snectral coverace)

RUBIDIUM

Some preliminary works by Yong et al. 2006, 2007, D’Orazi+ 2013 but very limited samples
Due to a critical branching point in the s-process path at ${ }^{5} \mathrm{~K} K$, the abundance of $R b$ relative to Sr, Y, or Zr can differ by a factor of 10 depending upon the neutron density at the s-process site.

In the standard picture, two neutron sources are present in the He-rich shell of AGB stars (Gallino et al. 1998).

The ${ }^{13} \mathrm{C}(a, n)^{16} \mathrm{O}$ reaction is activated in low-mass $\left(<4 \mathrm{M}_{\odot}\right)$ AGB stars in radiative conditions and produces low neutron densities ($\sim 10^{8} \mathrm{n} / \mathrm{cm} 3$), resulting in negative [Rb/Sr] and [Rb/Zr] ratios.

The ${ }^{22} \mathrm{Ne}(a, n){ }^{25} \mathrm{Mg}$ reaction is activated in the convective thermal pulses of IM-AGB stars and produces high neutron densities (up to $\sim 10^{13} \mathrm{n} / \mathrm{cm} 3$) \rightarrow positive $[\mathrm{Rb} / \mathrm{Sr}]$ and $[\mathrm{Rb} / Z \mathrm{r}]$ ratios.

THEORETICAL PREDICTIONS

«Some contend that IM-AGBs also synthesize s-process nuclides and then one might expect to see star-to-star variations in the Rb and Pb abundances as well as correlations with light element abundances" (Yong+ 2007)

Massive AGB models for heavy elements

Doherty+ 2014,2015, 2017

PAST/CURRENT SURVEYS

- NO SIMULTANEOUS determination of Li and heavy-element abundances
- NO Pb \& Rb measurements for significant samples.

GAIA-ESO ($R=20000$ / 48 000) Li I line included but not blue spectral coverage for best lines of n-capture elements, no Pb, Rb..

APOGEE ($R=22500$) H band No Lithium and no n-capture elements

NEXT-COMING SURVEYS

WEAVE : R=20000 max, but will have Li and several n-capture elements but R not enough for Pb, La, and Rb

MOONS : no Li, low resolution (except in H, same problem as APOGEE)

4MOST : same as WEAVE in resolution \& WL coverage

Under construction (telescope, instrument, survey) MSE = Maunakea Spectroscopic Explorer will have (maybe) higher resolution R=30000, 40000 under discussion WL coverage under discussion

WEAVE has ~1000 fibers (plus 20 mIFUs, 1 IIFU) @WHT, FoV 2 deg Ø R~5000: 366-959 nm R~20000: in 2 (of 3) WL regions

MOONS has ~1000 fibers @VLT, FoV 25 arcmin Ø R~5000: 0.6-1.8 μ R~9000: at CaT R ~20000: in H band

4MOST has ~2400 fibers (1600 LR, 800 HR at same time) @VISTA, FoV 4 sq.deg
$R \sim 5000+R \sim 20000$

THE UNIQUENESS OF HRMOS

1. SPECTRAL COVERAGE (blue coverage $<4200 \AA$ and Li at $6708 \AA$ + possibly Rb at 7800 (and C isotopes at 8000?)
2. VERY HIGH RESOLUTION (R > 50 000)
3. MULTIPLEXING CAPABILITIES (50+)

SCIENCE CASES \& SIMULATIONS (BLUE)

At $R=40000$ severe blending with Mn I line at 4057.9

Resolving power R	SNR per resol. element	$\sigma(\mathrm{EW})$ in $\mathrm{m} \AA$	$\Delta([\mathrm{Pb} / \mathrm{H}])$ in dex
40,000	100 (58 per pixel)	8.0	± 0.20
40,000	300 (173 per pixel)	4.4	± 0.10
60,000	100 (58 per pixel)	5.6	± 0.13
60,000	300 (173 per pixel)	3.2	± 0.07

SCIENCE CASES \& SIMULATIONS (BLUE)

Resolving power R	SNR per resol. element	$\sigma(\mathrm{EW})$ in mA	$\Delta([\mathrm{Pb} / \mathrm{H}])$ in dex
40,000	100 (58 per pixel)	8.0	± 0.20
40,000	300 (173 per pixel)	4.4	+0.10
60,000	100 (58 per pixel)	5.6	± 0.13
60,000	300 (173 per pixel)	3.2	± 0.07

SCIENCE CASES \& SIMULATIONS (RED)

TO BE DONE ..

Abia+ (2021)

Yong+ (2014)

