4MOST and future synergies with HRMOS

Thomas Bensby

Lund Observatory

LUND UNIVERSITY

Paranal

4MOST

de Jong, et al. "4MOST: Project overview and information for the first call for proposal", The Messenger, 2019

- To be placed on the ESO VISTA 4-m telescope on Paranal
- 2400 fibres (1600 LR \& 800 HR)
- 4 deg² 2 field of view
- First light 2024
- $5+5$ years

Southâmploin

4MOST - wavelength coverage

- High-Resolution Spectrograph (812 fibres) R20,000
- Blue: 3926-4355 Å
- Green: 5160-5730 \AA
- Red: 6060-6810 A
- Low-Resolution spectrograph (1624 fibres) $R=5000-7000$
- 4000-8850 \AA

Figure 2. Spectral resolution in the three channels of the 4MOST High-Resolution (HRS, upper lines) and Low-Resolution Spectrographs (LRS; lower lines).

4MOST - point source sensitivities

Figure 3. The expected 4MOST pointsource sensitivities for the signal-tonoise levels and lunar conditions indicated in the legend. The solid lines are for a total exposure time of 120 minutes, whereas the dashed lines are the limits for 20-minute exposures. The approximate conversion to signal-to-noise per pixel is obtained by dividing the HRS values by 3.3 and the LRS values by 1.7. For clarity, sky emission lines are removed - this mostly affects results redward of $7000 \AA$. Mean (not median) seeing conditions, airmass values, fibre quality and positioning errors, etc., are used, in order to ensure that this plot is representative for an entire 4MOST survey, not just for the optimal conditions. Typical science cases for obtaining detailed elemental abundances of stars (orange), stellar parameters and some elemental abundances (dark blue), stellar radial velocities (light blue), and galaxy and AGN redshifts (black: 90\% complete, grey: 50\% complete) are shown.

120 min exposure: solid lines

20 min exposures: dashed lines

SNR values given per \AA.
Divide by 3.3 to get to per pixel for HR
Divide by 1.7 to get to per pixel for LR

4MOST - consortium surveys

- S1 - Milky Way Halo low-resolution survey PI: Starkenburg \& Irwin
- S2 - Milky Way Halo high-resolution survey

PI: Christlieb

- S3 - Milky Way Disk and bulge low-resolution survey (4MIDABLE-LR)

PI: Chiappini \& Minchev

- S4 - Milky Way Disk and bulge high-resolution survey (4MIDABLE-HR)

PI: Bensby \& Bergemann

- S5-eRosita Galaxy cluster redshift survey

PI: Comparat

- S6 - Active galactic nuclei survey PI: Merloni
- S7 - Wide area VISTA extra-galactic survey (WAVES)

PI: Driver \& Liske

- S8-Cosmology redshift survey

PI: Kneib \& Richard

- S9-1001 Magellanic fields survey

PI: Cioni

- S10 - The time domain extragalactic survey (TIDES)

PI: Sullivan

4MOST - consortium surveys

- S1 - Milky Way Halo low-resolution survey

PI: Starkenburg \& Irwin

- S2 - Milky Way Halo high-resolution survey

PI: Christlieb

- S3 - Milky Way Disk and bulge low-resolution survey (4MIDABLE-LR) Pl: Chiappini \& Minchev
- S4 - Milky Way Disk and bulge high-resolution survey (4MIDABLE-HR)

PI: Bensby \& Bergemann

- S5-eRosita Galaxy cluster redshift survey

PI: Comparat

- S6 - Active galactic nuclei survey PI: Merloni
- S7 - Wide area VISTA extra-galactic survey (WAVES) PI: Driver \& Liske
- S8-Cosmology redshift survey PI: Kneib \& Richard
- S9-1001 Magellanic fields PI: Cioni
- S10 - The time domain ex ragalactic survey (TIDES)

Pl: Sullivan

4MOST MIlky way Disk And BuLgE High-Resolution survey

Structure and evolution of the Galactic disk and bulge

Thomas Bensby (Lund), Maria Bergemann (MPIA), and the 4MIDABLE-HR Team

Disk \& Bulge high-res survey

Bensby \& Bergemann+ 2019

Spectra of >3 million stars at $R=20.000$

- Galactic discs: radial migration, mergers, oscillations
- Classical or pseudo-bulge or both
- Stellar physics

Science applications: stellar physics, dark matter distribution, spiral arm dynamics, stellar siblings, mass function, exoplanet hosts, star cluster evolution and dissolution, history of chemical elements, ...

4MIDABLE-HR

4MIDABLE-HR subsurveys

1. Disk/bulge $S N R>100 \AA^{-1}$
2. Z-disk $S N R>250 \AA^{-1}$
3. Deep bulge $S N R>100 \AA^{-1}$
4. Deep WAVES SNR>100 \AA^{-1}
5. Cepheids SNR>100 \AA^{-1}
6. eRosita $S N R>100 \AA^{-1}$
7. Seismic $S N R>100 \AA^{-1}$ or $S N R>250 \AA^{-1}$
8. Clusters $S N R>100 \AA^{-1}$ or $S N R>250 \AA^{-1}$
9. Planets $S N R>100 \AA^{-1}$ or $S N R>250 \AA^{-1}$

4MIDABLE-HR

4M|DABLE-HR

Taking advantage of high signal-to-noise (S / N) spectra obtained in three windows: $3926-4355 \AA, 5160-5730 \AA$, and $6100-6790 \AA$, which allows elements of all main nucleosynthesis channels to be targeted, we will determine abundances of more than 30 elements with a precision better than 0.1 dex

Fig. 4 Characteristic abundance precisions for 31 chemical elements. Top panel demonstrates the fractional statistical uncertainty, rms/ Δ, of abundance determinations based on simulations of Mock 4MOST high-resolution spectra at different S / N ratios. Δ corresponds to the range of expected abundance variations at a given metallicity. Bottom panel shows that the bias of abundances typically does not exceed 0.05 dex for HR spectra.

4MIDABLE-HR

5-year survey simulation

ODOS
FoM
© FH
Fractional FH
FH Tsp
\bigcirc Fractional FH Tsp y-axis
O FoM
OFH
Fractional FH
FH Tsp
Fractional FH Tsp
○ Overhead

x	D	G	B
FH range			
3 ■			

Total: 28.95 MFH (89\%)
Subtotal: 31.86 MFH (98\%)

LR Halo

(Starkenburg \& Irwin)

Main objectives include to quantifying the number of streams and amount of kinematic structures as a function of distance and location on the sky. Aims to determine metallicity and abundances (mainly [Mg/Fe]). Follow-up observations clearly needed of new/interesting features....

LR Bulge and Disk (4MIDABLE-LR)

(Chiappini \& Minchev)

Our main goals are:

- To better understand the current Milky Way disc structure and dynamics (bar, spiral arms, vertical structure, stellar radial migration, merger history).
- To study the chrono-chemo-dynamics of the disc, which, when combined with the above will allow us to recover the disc evolutionary history.
- To better understand the formation of the Milky Way bulge/bar using both chemical and kinematical information.
- To study the inner disc/bulge and disc/ halo interfaces by covering a large area and ensuring high-quality chemical and kinematical information.

4MOST vs WEAVE

WEAVE: outer disk, anti-centre

4MOST: inner disk, bulge

Complementary, so it is important to have cross-calibration fields

Large survey follow-up

- 4MOST (R~18000)
- WEAVE (R~18000)
- These surveys will observe millions of targets in the Milky Way bulge and disk and discover a multitude of new things
- Streams, overdensities,.....
- Follow-up observations is not possible within the surveys
- High-res and higher SNR observations will allow a better characterisation of new discoveries
- Assuming that higher R gives better precision in abundances

Large survey follow-up

- Better precision will lower the observed dispersion of "structures" and allow us to distinguish them from each other and from the (thin and thick) disk field stars with smaller samples

Fig. 4. Minimum sample size needed to distinguish two equal Gaussian populations, as a function of the separation of the population mean in units of the standard deviation of each population. The circles are the results from Monte-Carlo simulations as described in the text, using a $\mathrm{K}-\mathrm{S}$ type test with significance level $\alpha=0.01$ and power $1-\beta=0.99$. The curve is the fitted function in Eq. (2) or (3).

Lindegren \& Feltzing (2013)

Large survey follow-up

- Higher precision in abundances needed (than what current large surveys provide)
- Possible to do important elements with usually very weak lines such as e.g. Eu and [OI6300] that require high resolution, and more....
- Bulge and disk poorly explored in neutron-capture elements, unclear if the large surveys will be able to provide good enough data for e.g. Eu
- +all the other excellent reasons presented at this meeting....

